skip to main content


Title: Dynamics of Explosions in Cylindrical Vented Enclosures: Validation of a Computational Model by Experiments
Recent explosions with devastating consequences have re-emphasized the relevance of fire safety and explosion research. From earlier works, the severity of the explosion has been said to depend on various factors such as the ignition location, type of a combustible mixture, enclosure configuration, and equivalence ratio. Explosion venting has been proposed as a safety measure in curbing explosion impact, and the design of safety vent requires a deep understanding of the explosion phenomenon. To address this, the Explosion Venting Analyzer (EVA)—a mathematical model predicting the maximum overpressure and characterizing the explosion in an enclosure—has been recently developed and coded (Process Saf. Environ. Prot. 99 (2016) 167). The present work is devoted to methane explosions because the natural gas—a common fossil fuel used for various domestic, commercial, and industrial purposes—has methane as its major constituent. Specifically, the dynamics of methane-air explosion in vented cylindrical enclosures is scrutinized, computationally and experimentally, such that the accuracy of the EVA predictions is validated by the experiments, with the Cantera package integrated into the EVA to identify the flame speeds. The EVA results for the rear-ignited vented methane-air explosion show good agreement with the experimental results.  more » « less
Award ID(s):
1726534
NSF-PAR ID:
10314874
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Fire
Volume:
4
Issue:
1
ISSN:
2571-6255
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This study explores the carbon stability in the Arctic permafrost following the sea‐level transgression since the Last Glacial Maximum (LGM). The Arctic permafrost stores a significant amount of organic carbon sequestered as frozen particulate organic carbon, solid methane hydrate and free methane gas. Post‐LGM sea‐level transgression resulted in ocean water, which is up to 20°C warmer compared to the average annual air mass, inundating, and thawing the permafrost. This study develops a one‐dimensional multiphase flow, multicomponent transport numerical model and apply it to investigate the coupled thermal, hydraulic, microbial, and chemical processes occurring in the thawing subsea permafrost. Results show that microbial methane is produced and vented to the seawater immediately upon the flooding of the Arctic continental shelves. This microbial methane is generated by the biodegradation of the previously frozen organic carbon. The maximum seabed methane flux is predicted in the shallow water where the sediment has been warmed up, but the remaining amount of organic carbon is still high. It is less likely to cause seabed methane emission by methane hydrate dissociation. Such a situation only happens when there is a very shallow (∼200 m depth) intra‐permafrost methane hydrate, the occurrence of which is limited. This study provides insights into the limits of methane release from the ongoing flooding of the Arctic permafrost, which is critical to understand the role of the Arctic permafrost in the carbon cycle, ocean chemistry and climate change.

     
    more » « less
  2. Abstract

    Acoustic source inversions estimate the mass flow rate of volcanic explosions or yield of chemical explosions and provide insight into potential source directionality. However, the limitations of applying these methods to complex sources and their ability to resolve a stable solution have not been investigated in detail. We perform synthetic infrasound waveform inversions that use 3‐D Green’s functions for a variety of idealized and realistic deployment scenarios using both a flat plane and Yasur volcano, Vanuatu as examples. We investigate the ability of various scenarios to retrieve the input source functions and relative amplitudes for monopole and multipole (monopole and dipole) inversions. Infrasound waveform inversions appear to be a robust method to quantify mass flow rates from simple sources (monopole) using deployments of infrasound sensors placed around a source, but care should be taken when analyzing and interpreting results from more complex acoustic sources (multipole) that have significant directional components. In the examples we consider the solution is stable for monopole inversions with a signal‐to‐noise ratio greater than five and the dipole component is small. For most scenarios investigated, the vertical dipole component of the multipole explosion source is poorly constrained and can impact the ability to recover the other source term components. Because multipole inversions are ill‐posed for many deployments, a low residual does not necessarily mean the proper source vector has been recovered. Synthetic studies can help investigate the limitations and place bounds on information that may be missing using monopole and multipole inversions for potentially directional sources.

     
    more » « less
  3. null (Ed.)
    Abstract

    Shock waves from underwater and air explosions are significant threats to surface and underwater vehicles and structures. Recent studies on the mechanical and thermal properties of various phase-separated elastomers indicate the possibility of applying these materials as a coating to mitigate shock-induced structural failures. To demonstrate this approach and investigate its efficacy, this paper presents a fluid-structure coupled computational model capable of predicting the dynamic response of air-backed bilayer (i.e. elastomer coating – metal substrate) structures submerged in water to hydrostatic and underwater explosion loads. The model couples a three-dimensional multiphase finite volume computational fluid dynamics model with a nonlinear finite element computational solid dynamics model using the FIVER (FInite Volume method with Exact multi-material Riemann solvers) method. The kinematic boundary condition at the fluid-structure interface is enforced using an embedded boundary method that is capable of handling large structural deformation and topological changes. The dynamic interface condition is enforced by formulating and solving local, one-dimensional fluid-solid Riemann problems, which is well-suited for transferring shock and impulsive loads. The capability of this computational model is demonstrated through a numerical investigation of hydrostatic and shock-induced collapse of aluminum tubes with polyurea coating on its inner surface. The thickness of the structure is resolved explicitly by the finite element mesh. The nonlinear material behavior of polyurea is accounted for using a hyper-viscoelastic constitutive model featuring a modified Mooney-Rivlin equation and a stress relaxation function in the form of prony series. Three numerical experiments are conducted to simulate and compare the collapse of the structure in different loading conditions, including a constant pressure, a fluid environment initially in hydrostatic equilibrium, and a two-phase fluid flow created by a near-field underwater explosion.

     
    more » « less
  4. ABSTRACT

    We investigate the impact of rotation and magnetic fields on the dynamics and gravitational wave emission in 2D core–collapse supernova simulations with neutrino transport. We simulate 17 different models of $15\, {\rm M}_\odot$ and $39\, {\rm M}_\odot$ progenitor stars with various initial rotation profiles and initial magnetic fields strengths up to $10^{12}\, \mathrm{G}$, assuming a dipolar field geometry in the progenitor. Strong magnetic fields generally prove conducive to shock revival, though this trend is not without exceptions. The impact of rotation on the post-bounce dynamics is more variegated, in line with previous studies. A significant impact on the time-frequency structure of the gravitational wave signal is found only for rapid rotation or strong initial fields. For rapid rotation, the angular momentum gradient at the proto-neutron star surface can appreciably affect the frequency of the dominant mode, so that known analytic relations for the high-frequency emission band no longer hold. In case of two magnetorotational explosion models, the deviation from these analytic relations is even more pronounced. One of the magnetorotational explosions has been evolved to more than half a second after the onset of the explosion and shows a subsidence of high-frequency emission at late times. Its most conspicuous gravitational wave signature is a high-amplitude tail signal. We also estimate the maximum detection distances for our waveforms. The magnetorotational models do not stick out for higher detectability during the post-bounce and explosion phase.

     
    more » « less
  5. Abstract

    We report the discovery and follow-up observations of VT 1137–0337, an unusual radio transient found in our systematic search for extragalactic explosions in the Very Large Array Sky Survey. It is located in the brightest region of a dwarf starburst galaxy at a luminosity distance of 121.6 Mpc. Its 3 GHz luminosity is comparable to luminous radio supernovae associated with dense circumstellar interaction and relativistic outflows. However, its broadband radio spectrum—proportional toν−0.35over a range of ≳10× in frequency and fading at a rate of 5% yr–1—cannot be directly explained by the shock of a stellar explosion. Jets launched by various classes of accreting black holes also struggle to account for VT 1137–0337's combination of observational properties. Instead, we propose that VT 1137–0337 is a decades-old pulsar wind nebula that has recently emerged from within the free–free opacity of its surrounding supernova ejecta. If the nebula is powered by spin-down, the central neutron star should have a surface dipole field of ∼1013–1014G and a present-day spin period of ∼10–100 ms. Alternatively, the nebula may be powered by the release of magnetic energy from a magnetar. Magnetar nebulae have been proposed to explain the persistent radio sources associated with the repeating fast radio bursts FRB 121102 and FRB 190520B. These FRB persistent sources have not previously been observed as transients but do bear a striking resemblance to VT 1137–0337 in their radio luminosity, spectral index, and host galaxy properties.

     
    more » « less