skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Future trends of arctic surface wind speeds and their relationship with sea ice in CMIP5 climate model simulations
Recent climate change in the Arctic has been rapid and dramatic, leading to numerous physical and societal consequences. Many studies have investigated these ongoing and projected future changes across a range of climatic variables, but surprisingly little attention has been paid to wind speed, despite its known importance for sea ice motion, ocean wave heights, and coastal erosion. Here we analyzed future trends in Arctic surface wind speed and its relationship with sea ice cover among CMIP5 global climate models. There is a strong anticorrelation between climatological sea ice concentration and wind speed in the early 21st-century reference climate, and the vast majority of models simulate widespread future strengthening of surface winds over the Arctic Ocean (annual multi-model mean trend of up to 0.8 m s−1 or 13%). Nearly all models produce an inverse relationship between projected changes in sea ice cover and wind speed, such that grid cells with virtually total ice loss almost always experience stronger winds. Consistent with the largest regional ice losses during autumn and winter, the greatest increases in future wind speeds are expected during these two seasons, with localized strengthening up to 23%. As in other studies, stronger surface winds cannot be attributed to tighter pressure gradients but rather to some combination of weakened atmospheric stability and reduced surface roughness as the surface warms and melts. The intermodel spread of wind speed changes, as expressed by the two most contrasting model results, appears to stem from differences in the treatment of surface roughness.  more » « less
Award ID(s):
2043727
PAR ID:
10314883
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Climate Dynamics
ISSN:
0930-7575
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Arctic is undergoing a pronounced and rapid transformation in response to changing greenhouse gasses, including reduction in sea ice extent and thickness. There are also projected increases in near‐surface Arctic wind. This study addresses how the winds trends may be driven by changing surface roughness and/or stability in different Arctic regions and seasons, something that has not yet been thoroughly investigated. We analyze 50 experiments from the Community Earth System Model Version 2 (CESM2) Large Ensemble and five experiments using CESM2 with an artificially decreased sea ice roughness to match that of the open ocean. We find that with a smoother surface there are higher mean wind speeds and slower mean ice speeds in the autumn, winter, and spring. The artificially reduced surface roughness also strongly impacts the wind speed trends in autumn and winter, and we find that atmospheric stability changes are also important contributors to driving wind trends in both experiments. In contrast to the clear impacts on winds, the sea ice mean state and trends are statistically indistinguishable, suggesting that near‐surface winds are not major drivers of Arctic sea ice loss. Two major results of this work are: (a) the near‐surface wind trends are driven by changes in both surface roughness and near‐surface atmospheric stability that are themselves changing from sea ice loss, and (b) the sea ice mean state and trends are driven by the overall warming trend due to increasing greenhouse gas emissions and not significantly impacted by coupled feedbacks with the surface winds. 
    more » « less
  2. Simulations from a regional ocean and sea ice model are presented to analyze the potential impacts of climate change on dimethylsulfide (DMS) ocean concentrations and emissions in the Arctic Ocean during the 21st century for a scenario of strong warming (RCP8.5, 2016–2085). The model used includes sulfur biogeochemistry in both the ocean and sea ice, representing the production of dimethylsulfoniopropionate and its conversion to DMS. Simulated DMS concentrations and emissions increase overall in the future throughout the Arctic. Substantial increases of summer ocean surface DMS concentrations and emissions are projected in the shallow continental shelves of the Eastern Arctic, due to a large reduction of sea ice cover. In the Central and Western Arctic, moderate increases of spring DMS production are trapped below sea ice even in the late 21st century. In deep basins, despite ice-free summers in the future, simulated DMS emissions are low, as DMS production occurs mostly below the mixed layer and remains at depth. The strong temporal variability of near-surface winds results in bursts of DMS emissions lasting a few days, with sea-to-air fluxes up to 10 times higher than the monthly median emissions rate. These spikes of DMS emissions occur throughout the Arctic, indicating an episodic impact of DMS on climate in areas of low mean DMS emissions. The simulated frequency of high-flux events increases during the 21st century in both spring and summer in almost all regions of the Arctic. However, the model is not capable of representing rapid out-gassing events during sea ice break-up, and improvements in the representation of leads are still necessary to fully assess the role of sea ice DMS production. With the ongoing decrease in anthropogenic sulfur emissions, these results suggest a future amplification of the role of DMS in aerosol and cloud formation in the Arctic. 
    more » « less
  3. Abstract The recent Arctic sea ice loss is a key driver of the amplified surface warming in the northern high latitudes, and simultaneously a major source of uncertainty in model projections of Arctic climate change. Previous work has shown that the spread in model predictions of future Arctic amplification (AA) can be traced back to the inter-model spread in simulated long-term sea ice loss. We demonstrate that the strength of future AA is further linked to the current climate’s, observable sea ice state across the multi-model ensemble of the 6th Coupled Model Intercomparison Project (CMIP6). The implication is that the sea-ice climatology sets the stage for long-term changes through the 21st century, which mediate the degree by which Arctic warming is amplified with respect to global warming. We determine that a lower base-climate sea ice extent and sea ice concentration (SIC) in CMIP6 models enable stronger ice melt in both future climate and during the seasonal cycle. In particular, models with lower Arctic-mean SIC project stronger future ice loss and a more intense seasonal cycle in ice melt and growth. Both processes systemically link to a larger future AA across climate models. These results are manifested by the role of climate feedbacks that have been widely identified as major drivers of AA. We show in particular that models with low base-climate SIC predict a systematically stronger warming contribution through both sea-ice albedo feedback and temperature feedbacks in the future, as compared to models with high SIC. From our derived linear regressions in conjunction with observations, we estimate a 21st-century AA over sea ice of 2.47–3.34 with respect to global warming. Lastly, from the tight relationship between base-climate SIC and the projected timing of an ice-free September, we predict a seasonally ice-free Arctic by mid-century under a high-emission scenario. 
    more » « less
  4. Abstract Over the coming century, both Arctic and Antarctic sea ice cover are projected to substantially decline. While many studies have documented the potential impacts of projected Arctic sea ice loss on the climate of the mid-latitudes and the tropics, little attention has been paid to the impacts of Antarctic sea ice loss. Here, using comprehensive climate model simulations, we show that the effects of end-of-the-century projected Antarctic sea ice loss extend much further than the tropics, and are able to produce considerable impacts on Arctic climate. Specifically, our model indicates that the Arctic surface will warm by 1 °C and Arctic sea ice extent will decline by 0.5 × 106km2in response to future Antarctic sea ice loss. Furthermore, with the aid of additional atmosphere-only simulations, we show that this pole-to-pole effect is mediated by the response of the tropical SSTs to Antarctic sea ice loss: these simulations reveal that Rossby waves originating in the tropical Pacific cause the Aleutian Low to deepen in the boreal winter, bringing warm air into the Arctic, and leading to sea ice loss in the Bering Sea. This pole-to-pole signal highlights the importance of understanding the climate impacts of the projected sea ice loss in the Antarctic, which could be as important as those associated with projected sea ice loss in the Arctic. 
    more » « less
  5. Abstract Tides are an important factor shaping the sea ice system in the Arctic Ocean by altering vertical heat fluxes and advection patterns. Unfortunately, observations are sparse, and the analysis of tides is complicated by the proximity of wind-driven inertial oscillations to the semidiurnal frequencies. Furthermore, computational costs typically prohibit the inclusion of tides in ocean models, leaving a significant gap in our understanding. Motivated by summer observations showing elevated downward surface heat fluxes in the presence of tides, we analyzed simulations carried out with an eddy-permitting coupled ice–ocean model to quantify the impact of tidal effects on Arctic sea ice. In line with previous studies, we find an overall decrease in sea ice volume when tides are included in the simulations, associated with increased vertical mixing and the upward flux of heat from deeper layers of the Arctic Ocean, but this sea ice volume decrease is less pronounced than previously thought. Surprisingly, our simulations suggest that in summer, Arctic sea ice area is larger, by up to 1.5%, when tides are included in the simulations. This effect is partly caused by an increased downward surface heat flux and a consequently lower sea surface temperature, delaying sea ice melting predominantly in the Siberian Seas, where tides are moderately strong and the warm Atlantic Water core is located relatively deep and does not encroach on the wide continental shelf. Here, tidally enhanced downward heat flux from the surface in summer can dominate over the increased upward heat flux from the warm Atlantic Water layer. Significance StatementThis study sheds light on the complex and understudied role of tides in Arctic sea ice dynamics. By utilizing advanced computer models, our research uncovers that, contrary to common expectations, tides contribute to a seasonal increase in sea ice area by up to 1.5% in summer. This effect is attributed to enhanced advection of sea ice into the Siberian Seas and a local increase in downward heat flux reducing sea surface temperatures, thereby delaying sea ice melting in this region. Our findings challenge prevailing notions about the negative impact of tides on sea ice and highlight the importance of incorporating tidal impacts in ocean models to improve predictions of Arctic sea ice changes, key for our understanding of both Arctic and global climate dynamics. 
    more » « less