skip to main content


Title: Pricing Conditional Value at Risk-Sensitive Economic Dispatch
There are growing concerns over the ability of current electricity market designs to adequately model and optimize against the stochastic nature of renewable resources such as wind and solar. In this paper, we consider an economic dispatch problem that explicitly accounts for said uncertainty and enforces network and generation limits using conditional value at risk. Our key contribution is the definition and analysis of risk-sensitive locational marginal prices (risk-LMPs) derived from such a market clearing problem. Risk-LMPs extend conventional LMPs to the uncertain setting. Settlements defined via risk-LMPs compensate resources for both energy and reserve schedules. We study these prices via sample average approximation (SAA) on example power networks to demonstrate their viability for electricity pricing with large-scale integration of renewables.  more » « less
Award ID(s):
2048065
NSF-PAR ID:
10315056
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2021 IEEE Power & Energy Society General Meeting (PESGM)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We consider decentralized scheduling of Distributed Energy Resources (DERs) in a day-ahead market that clears energy and reserves offered by both centralized generators and DERs. Recognizing the difficulty of scheduling transmission network connected generators together with distribution feeder connected DERs that have complex intertemporal preferences and dynamics, we propose a tractable distributed algorithm where DERs self-schedule based on granular Distribution Locational Marginal Prices (DLMPs) derived from LMPs augmented by distribution network costs. For the resulting iterative DER self-scheduling process, we examine the opportunity of DERs to engage in strategic behavior depending on whether DERs do or do not have access to detailed distribution feeder information. Although the proposed distributed algorithm is tractable on detailed real-life network models, we utilize a simplified T&D network model to derive instructive analytical and numerical results on the impact of strategic DER behavior on social welfare loss, and the distribution of costs and benefits to various market participants. 
    more » « less
  2. Enabling participation of demand-side flexibility in electricity markets is key to improving power system resilience and increasing the penetration of renewable generation. In this work we are motivated by the curtailment of near-zero-marginal-cost renewable resources during periods of oversupply, a particularly important cause of inefficient generation dispatch. Focusing on shiftable load in a multi-interval economic dispatch setting, we show that incompatible incentives arise for loads in the standard market formulation. While the system's overall efficiency increases from dispatching flexible demand, the overall welfare of loads can decrease as a result of higher spot prices. We propose a market design to address this incentive issue. Specifically, by imposing a small number of additional constraints on the economic dispatch problem, we obtain a mechanism that guarantees individual rationality for all market participants while simultaneously obtaining a more efficient dispatch. Our formulation leads to a natural definition of a uniform, time-varying flexibility price that is paid to loads to incentivize flexible bidding. We provide theoretical guarantees and empirically validate our model with simulations on real-world generation data from California Independent System Operator (CAISO). 
    more » « less
  3. If a trader could predict price changes in the stock market better than other traders, she would make a fortune. Similarly in the electricity market, a trader that could predict changes in the electricity load, and thus electricity prices, would be able to make large profits. Predicting price changes in the electricity market better than other market participants is hard, but in this paper, we show that attackers can manipulate the electricity prices in small but predictable ways, giving them a competitive advantage in the market. Our attack is possible when the adversary controls a botnet of high wattage devices such as air conditioning units, which are able to abruptly change the total demand of the power grid. Such attacks are called Manipulation of Demand via IoT (MaDIoT) attacks. In this paper, we present a new variant of MaDIoT and name it Manipulation of Market via IoT (MaMIoT). MaMIoT is the first energy market manipulation cyberattack that leverages high wattage IoT botnets to slightly change the total demand of the power grid with the aim of affecting the electricity prices in the favor of specific market players. Using real-world data obtained from two major energy markets, we show that MaMIoT can significantly increase the profit of particular market players or financially damage a group of players depending on the motivation of the attacker. 
    more » « less
  4. Dynamic pricing, also known as real-time pricing, provides electricity users with an economic incentive to adjust electricity use based on changing market conditions. This paper studies the economic implications of real-time pricing mechanisms in a cement manufacturing plant. Production for a representative cement manufacturing plant is modeled using stochastic mathematical programming. The results show that a cement plant can a) reduce electricity costs by shifting electricity load of certain processes to times when electricity prices are lower, and b) profitably reduce electricity use during peak prices through more efficient scheduling of production under real-time pricing compared to fixed pricing. The results suggest that building scheduling flexibility into certain industrial manufacturing processes to reschedule electricity consumption when the electricity prices at their peak may be economical. The results also suggest that shifts in the production schedule of a cement manufacturer that result from real-time pricing may also influence environmental impacts. The modelling framework modeled real-time pricing as a source of risk in this study, which is also applicable to other energy intensive industries. As such, dynamic pricing strategies that include the non-market impacts of electricity generation should be further explored. 
    more » « less
  5. We investigate the management of a merchant wind energy farm co‐located with a grid‐level storage facility and connected to a market through a transmission line. We formulate this problem as a Markov decision process (MDP) with stochastic wind speed and electricity prices. Consistent with most deregulated electricity markets, our model allows these prices to be negative. As this feature makes it difficult to characterize any optimal policy of our MDP, we show the optimality of astage‐ and partial‐state‐dependent‐thresholdpolicy when prices can only be positive. We extend this structure when prices can also be negative to develop heuristic one (H1) that approximately solves a stochastic dynamic program. We then simplify H1 to obtain heuristic two (H2) that relies on aprice‐dependent‐thresholdpolicy and derivative‐free deterministic optimization embedded within a Monte Carlo simulation of the random processes of our MDP. We conduct an extensive and data‐calibrated numerical study to assess the performance of these heuristics and variants of known ones against the optimal policy, as well as to quantify the effect of negative prices on the value added by and environmental benefit of storage. We find that (i) H1 computes an optimal policy and on average is about 17 times faster to execute than directly obtaining an optimal policy; (ii) H2 has a near optimal policy (with a 2.86% average optimality gap), exhibits a two orders of magnitude average speed advantage over H1, and outperforms the remaining considered heuristics; (iii) storage brings in more value but its environmental benefit falls as negative electricity prices occur more frequently in our model.

     
    more » « less