- Award ID(s):
- 1751363
- Publication Date:
- NSF-PAR ID:
- 10315095
- Journal Name:
- Journal of Climate
- Volume:
- 35
- Issue:
- 4
- ISSN:
- 0894-8755
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Anthropogenic warming has led to an unprecedented year-round reduction in Arctic sea ice extent. This has far-reaching consequences for indigenous and local communities, polar ecosystems, and global climate, motivating the need for accurate seasonal sea ice forecasts. While physics-based dynamical models can successfully forecast sea ice concentration several weeks ahead, they struggle to outperform simple statistical benchmarks at longer lead times. We present a probabilistic, deep learning sea ice forecasting system, IceNet. The system has been trained on climate simulations and observational data to forecast the next 6 months of monthly-averaged sea ice concentration maps. We show that IceNet advances the range of accurate sea ice forecasts, outperforming a state-of-the-art dynamical model in seasonal forecasts of summer sea ice, particularly for extreme sea ice events. This step-change in sea ice forecasting ability brings us closer to conservation tools that mitigate risks associated with rapid sea ice loss.
-
Abstract We assess to what extent seven state-of-the-art dynamical prediction systems can retrospectively predict winter sea surface temperature (SST) in the subpolar North Atlantic and the Nordic seas in the period 1970–2005. We focus on the region where warm water flows poleward (i.e., the Atlantic water pathway to the Arctic) and on interannual-to-decadal time scales. Observational studies demonstrate predictability several years in advance in this region, but we find that SST skill is low with significant skill only at a lead time of 1–2 years. To better understand why the prediction systems have predictive skill or lack thereof, we assess the skill of the systems to reproduce a spatiotemporal SST pattern based on observations. The physical mechanism underlying this pattern is a propagation of oceanic anomalies from low to high latitudes along the major currents, the North Atlantic Current and the Norwegian Atlantic Current. We find that the prediction systems have difficulties in reproducing this pattern. To identify whether the misrepresentation is due to incorrect model physics, we assess the respective uninitialized historical simulations. These simulations also tend to misrepresent the spatiotemporal SST pattern, indicating that the physical mechanism is not properly simulated. However, the representation of the pattern ismore »
-
Abstract Observational evidence shows changes to North American weather regime occurrence depending on the strength of the lower-stratospheric polar vortex. However, it is not yet clear how this occurs or to what extent an improved stratospheric forecast would change regime predictions. Here we analyze four North American regimes at 500 hPa, constructed in principal component (PC) space. We consider both the location of the regimes in PC space and the linear regression between each PC and the lower-stratospheric zonal-mean winds, yielding a theory of which regime transitions are likely to occur due to changes in the lower stratosphere. Using a set of OpenIFS simulations, we then test the effect of relaxing the polar stratosphere to ERA-Interim on subseasonal regime predictions. The model start dates are selected based on particularly poor subseasonal regime predictions in the European Centre for Medium-Range Weather Forecasts CY43R3 hindcasts. While the results show only a modest improvement to the number of accurate regime predictions, there is a substantial reduction in Euclidean distance error in PC space. The average movement of the forecasts within PC space is found to be consistent with expectation for moderate-to-large lower-stratospheric zonal wind perturbations. Overall, our results provide a framework for interpretingmore »
-
Abstract Skillfully predicting the North Atlantic Oscillation (NAO), and the closely related northern annular mode (NAM), on ‘subseasonal’ (weeks to less than a season) timescales is a high priority for operational forecasting centers, because of the NAO’s association with high-impact weather events, particularly during winter. Unfortunately, the relatively fast, weather-related processes dominating total NAO variability are unpredictable beyond about two weeks. On longer timescales, the tropical troposphere and the stratosphere provide some predictability, but they contribute relatively little to total NAO variance. Moreover, subseasonal forecasts are only sporadically skillful, suggesting the practical need to identify the fewer potentially predictable events at the time of forecast. Here we construct an observationally based linear inverse model (LIM) that predicts when, and diagnoses why, subseasonal NAO forecasts will be most skillful. We use the LIM to identify those dynamical modes that, despite capturing only a fraction of overall NAO variability, are largely responsible for extended-range NAO skill. Predictable NAO events stem from the linear superposition of these modes, which represent joint tropical sea-surface temperature-lower stratosphere variability plus a single mode capturing downward propagation from the upper stratosphere. Our method has broad applicability because both the LIM and the state-of-the-art European Centre for Medium-Rangemore »
-
Impacts of a warming climate are amplified in the Arctic. One notorious impact is recent and record-breaking summertime sea-ice loss. Expanding areas of open water and a prolonged ice-free season create opportunity for some industries but challenge indigenous peoples relying on sea ice for transportation and access to food. The observed and projected increase of Arctic maritime activity requires accurate sea-ice forecasts to protect life, environment, and property. Motivated by emerging prediction needs on the operational timescale (≤10 days), this study explores where local indigenous knowledge (LIK) fits into the forecaster toolbox and how it can be woven into useful sea-ice information products. The 2011 spring ice retreat season in the Bering Sea is presented as a forecasting case study. LIK, housed in a database of community-based ice and weather logs, and an ice-ocean forecast model developed by the US Navy are analyzed for their ability to provide information relevant to stakeholder needs. Additionally, metrics for verifying numerical sea-ice forecasts on multiple scales are derived. The model exhibits skill relative to persistence and climatology on the regional scale. At the community scale, we discuss how LIK and new model guidance can enhance public sea-ice information resources.