skip to main content

Title: Emerging Dimming as Coronal Heating Episodes
Abstract Emerging dimming occurs in isolated solar active regions (ARs) during the early stages of magnetic flux emergence. Observed by the Atmospheric Imaging Assembly, it features a rapid decrease in extreme-ultraviolet (EUV) emission in the 171 Å channel images, and a simultaneous increase in the 211 Å images. Here, we analyze the coronal thermodynamic and magnetic properties to probe its physical origin. We calculate the time-dependent differential emission measures for a sample of 18 events between 2010 and 2012. The emission measure (EM) decrease in the temperature range is well correlated with the EM increase in over eight orders of magnitude. This suggests that the coronal plasma is being heated from the quiet-Sun, sub-MK temperature to 1–2 MK, more typical for ARs. Potential field extrapolation indicates significant change in the local magnetic connectivity: the dimming region is now linked to the newly emerged flux via longer loops. We conclude that emerging dimming is likely caused by coronal heating episodes, powered by reconnection between the emerging and the ambient magnetic fields.
Authors:
;
Award ID(s):
1848250
Publication Date:
NSF-PAR ID:
10315489
Journal Name:
The Astrophysical Journal
Volume:
912
Issue:
1
ISSN:
0004-637X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Sunspot light bridges (LBs) exhibit a wide range of short-lived phenomena in the chromosphere and transition region. In contrast, we use here data from the Multi-Application Solar Telescope (MAST), the Interface Region Imaging Spectrograph (IRIS), Hinode, the Atmospheric Imaging Assembly (AIA), and the Helioseismic and Magnetic Imager (HMI) to analyze the sustained heating over days in an LB in a regular sunspot. Chromospheric temperatures were retrieved from the MAST Caiiand IRIS Mgiilines by nonlocal thermodynamic equilibrium inversions. Line widths, Doppler shifts, and intensities were derived from the IRIS lines using Gaussian fits. Coronal temperatures were estimated through the differential emission measure, while the coronal magnetic field was obtained from an extrapolation of the HMI vector field. At the photosphere, the LB exhibits a granular morphology with field strengths of about 400 G and no significant electric currents. The sunspot does not fragment, and the LB remains stable for several days. The chromospheric temperature, IRIS line intensities and widths, and AIA 171 and 211 Å intensities are all enhanced in the LB with temperatures from 8000 K to 2.5 MK. Photospheric plasma motions remain small, while the chromosphere and transition region indicate predominantly redshifts of 5–20 km s−1with occasional supersonicmore »downflows exceeding 100 km s−1. The excess thermal energy over the LB is about 3.2 × 1026erg and matches the radiative losses. It could be supplied by magnetic flux loss of the sunspot (7.5 × 1027erg), kinetic energy from the increase in the LB width (4 × 1028erg), or freefall of mass along the coronal loops (6.3 × 1026erg).

    « less
  2. Abstract

    During thequadrature period(2010 December–2011 August) the STEREO-A and B satellites were approximately at right angles to the SOHO satellite. This alignment was particularly advantageous for determining the coronal mass ejection (CME) properties, since the closer a CME propagates to the plane of sky, the smaller the measurement inaccuracies are. Our primary goal was to study dimmings and their relationship to CMEs and flares during this time. We identified 53 coronal dimmings using STEREO/EUVI 195 Å observations, and linked 42 of the dimmings to CMEs (observed with SOHO/LASCO/C2) and 23 to flares. Each dimming in the catalog was processed with the Coronal Dimming Tracker which detects transient dark regions in extreme ultraviolet images directly, without the use of difference images. This approach allowed us to observefootpoint dimmings: the regions of mass depletion at the footpoints of erupting magnetic flux rope structures. Our results show that the CME mass has a linear, moderate correlation with dimming total EUV intensity change, and a monotonic, moderate correlation with dimming area. These results suggest that the more the dimming intensity drops and the larger the erupting region is, the more plasma is evacuated. We also found a strong correlation between the flare duration andmore »the total change in EUV intensity. The correlation between dimming properties showed that larger dimmings tend to be brighter; they go through more intensity loss and generally live longer—supporting the hypothesis that larger transient open regions release more plasma and take longer to close down and refill with plasma.

    « less
  3. Context. We investigate the chromospheric counterpart of small-scale coronal loops constituting a coronal bright point (CBP) and its response to a photospheric magnetic-flux increase accompanied by co-temporal CBP heating. Aims. The aim of this study is to simultaneously investigate the chromospheric and coronal layers associated with a CBP, and in so doing, provide further understanding on the heating of plasmas confined in small-scale loops. Methods. We used co-observations from the Atmospheric Imaging Assembly and Helioseismic Magnetic Imager on board the Solar Dynamics Observatory, together with data from the Fast Imaging Solar Spectrograph taken in the H α and Ca  II 8542.1 Å lines. We also employed both linear force-free and potential field extrapolation models to investigate the magnetic topology of the CBP loops and the overlying corona, respectively. We used a new multi-layer spectral inversion technique to derive the temporal variations of the temperature of the H α loops (HLs). Results. We find that the counterpart of the CBP, as seen at chromospheric temperatures, is composed of a bundle of dark elongated features named in this work H α loops, which constitute an integral part of the CBP loop magnetic structure. An increase in the photospheric magnetic flux due tomore »flux emergence is accompanied by a rise of the coronal emission of the CBP loops, that is a heating episode. We also observe enhanced chromospheric activity associated with the occurrence of new HLs and mottles. While the coronal emission and magnetic flux increases appear to be co-temporal, the response of the H α counterpart of the CBP occurs with a small delay of less than 3 min. A sharp temperature increase is found in one of the HLs and in one of the CBP footpoints estimated at 46% and 55% with respect to the pre-event values, also starting with a delay of less than 3 min following the coronal heating episode. The low-lying CBP loop structure remains non-potential for the entire observing period. The magnetic topological analysis of the overlying corona reveals the presence of a coronal null point at the beginning and towards the end of the heating episode. Conclusions. The delay in the response of the chromospheric counterpart of the CBP suggests that the heating may have occurred at coronal heights.« less
  4. Abstract

    We present a comprehensive radiative magnetohydrodynamic simulation of the quiet Sun and large solar active regions. The 197 Mm wide simulation domain spans from 18(10) Mm beneath the photosphere to 113 Mm in the solar corona. Radiative transfer assuming local thermal equilibrium, optically thin radiative losses, and anisotropic conduction transport provide the necessary realism for synthesizing observables to compare with remote-sensing observations of the photosphere and corona. This model self-consistently reproduces observed features of the quiet Sun, emerging and developed active regions, and solar flares up to M class. Here, we report an overview of the first results. The surface magneto-convection yields an upward Poynting flux that is dissipated in the corona and heats the plasma to over 1 MK. The quiescent corona also presents ubiquitous propagating waves, jets, and bright points with sizes down to 2 Mm. Magnetic flux bundles emerge into the photosphere and give rise to strong and complex active regions with over 1023Mx magnetic flux. The coronal free magnetic energy, which is approximately 18% of the total magnetic energy, accumulates to approximately 1033erg. The coronal magnetic field is clearly non-force-free, as the Lorentz force needs to balance the pressure force and viscous stress as wellmore »as drive magnetic field evolution. The emission measure fromlog10T=4.5tolog10T>7provides a comprehensive view of the active region corona, such as coronal loops of various lengths and temperatures, mass circulation by evaporation and condensation, and eruptions from jets to large-scale mass ejections.

    « less
  5. Abstract In this paper, we report the observed temporal correlation between extreme-ultraviolet (EUV) emission and magneto-acoustic oscillations in an EUV moss region, which is the footpoint region only connected by magnetic loops with million-degree plasma. The result is obtained from a detailed multi-wavelength data analysis of the region with the purpose of resolving fine-scale mass and energy flows that come from the photosphere, pass through the chromosphere and finally heat the solar transition region or the corona. The data set covers three atmospheric levels on the Sun, consisting of high-resolution broad-band imaging at TiO 7057 Å and the line of sight magnetograms for the photosphere, high-resolution narrow-band images at helium i 10830 Å for the chromosphere and EUV images at 171 Å for the corona. The 10830 Å narrow-band images and the TiO 7057 Å broad-band images are from a much earlier observation on 2012 July 22 with the 1.6 meter aperture Goode Solar Telescope (GST) at Big Bear Solar Observatory (BBSO) and the EUV 171 Å images and the magnetograms are from observations made by Atmospheric Imaging Assembly (AIA) or Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). We report the following new phenomena: (1) Repeatedmore »injections of chromospheric material appearing as 10830 Å absorption are squirted out from inter-granular lanes with a period of ∼ 5 minutes. (2) EUV emissions are found to be periodically modulated with similar periods of ∼ 5 minutes. (3) Around the injection area where 10830 Å absorption is enhanced, both EUV emissions and strength of the magnetic field are remarkably stronger. (4) The peaks on the time profile of the EUV emissions are found to be in sync with oscillatory peaks of the stronger magnetic field in the region. These findings may give a series of strong evidences supporting the scenario that coronal heating is powered by magneto-acoustic waves.« less