Abstract Natural organisms have evolved a series of versatile functional biomaterials and structures to cope with survival crises in their living environment, exhibiting outstanding properties such as superhydrophobicity, anisotropy, and mechanical reinforcement, which have provided abundant inspiration for the design and fabrication of next‐generation multi‐functional devices. However, the lack of available materials and limitations of traditional manufacturing methods for complex multiscale structures have hindered the progress in bio‐inspired manufacturing of functional structures. As a revolutionary emerging manufacturing technology, additive manufacturing (i.e., 3D printing) offers high design flexibility and manufacturing freedom, providing the potential for the fabrication of intricate, multiscale, hierarchical, and multi‐material structures. Herein, a comprehensive review of current 3D printing of surface/interface structures, covering the applied materials, designs, and functional applications is provided. Several bio‐inspired surface structures that have been created using 3D printing technology are highlighted and categorized based on their specific properties and applications, some properties can be applied to multiple applications. The optimized designs of these 3D‐printed bio‐inspired surfaces offer a promising prospect of low‐cost, high efficiency, and excellent performance. Finally, challenges and opportunities in field of fabricating functional surface/interface with more versatile functional material, refined structural design, and better cost‐effective are discussed.
more »
« less
Constructional design of echinoid endoskeleton: main structural components and their potential for biomimetic applications
Abstract The endoskeleton of echinoderms ( Deuterostomia: Echinodermata ) is of mesodermal origin and consists of cells, organic components, as well as an inorganic mineral matrix. The echinoderm skeleton forms a complex lattice-system, which represents a model structure for naturally inspired engineering in terms of construction, mechanical behaviour and functional design. The sea urchin ( Echinodermata: Echinoidea ) endoskeleton consists of three main structural components: test, dental apparatus and accessory appendages. Although, all parts of the echinoid skeleton consist of the same basic material, their microstructure displays a great potential in meeting several mechanical needs according to a direct and clear structure–function relationship. This versatility has allowed the echinoid skeleton to adapt to different activities such as structural support, defence, feeding, burrowing and cleaning. Although, constrained by energy and resource efficiency, many of the structures found in the echinoid skeleton are optimized in terms of functional performances. Therefore, these structures can be used as role models for bio-inspired solutions in various industrial sectors such as building constructions, robotics, biomedical and material engineering. The present review provides an overview of previous mechanical and biomimetic research on the echinoid endoskeleton, describing the current state of knowledge and providing a reference for future studies.
more »
« less
- Award ID(s):
- 1630276
- PAR ID:
- 10315591
- Date Published:
- Journal Name:
- Bioinspiration & Biomimetics
- Volume:
- 16
- Issue:
- 1
- ISSN:
- 1748-3182
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This is a roadmap article with multiple contributors on different aspects of embodying intelligence and computing in the mechanical domain of functional materials and structures. Overall, an IOP roadmap article is a broad, multi-author review with leaders in the field discussing the latest developments, commissioned by the editorial board. The intention here is to cover various topics of adaptive structural and material systems with mechano-intelligence in the overall roadmap, with twelve sections in total. These sections cover topics from materials to devices to systems, such as computational metamaterials, neuromorphic materials, mechanical and material logic, mechanical memory, soft matter computing, physical reservoir computing, wave-based computing, morphological computing, mechanical neural networks, plant-inspired intelligence, pneumatic logic circuits, intelligent robotics, and embodying mechano-intelligence for engineering functionalities via physical computing. In this paper, we view all the 2-page sections with equal contributions to the overall roadmap article and thus list the authorship on the front page via alphabetical order of their last names. On the other hand, for each individual section, the authors decide on their own the order of authorship.more » « less
-
null (Ed.)Synopsis The adhesive toe pads of tree frogs have inspired the design of various so-called ‘smooth’ synthetic adhesives for wet environments. However, these adhesives do not reach the attachment performance of their biological models in terms of contact formation, maintenance of attachment, and detachment. In tree frogs, attachment is facilitated by an interconnected ensemble of superficial and internal morphological components, which together form a functional unit. To help bridging the gap between biological and bioinspired adhesives, in this review, we (1) provide an overview of the functional components of tree frog toe pads, (2) investigate which of these components (and attachment mechanisms implemented therein) have already been transferred into synthetic adhesives, and (3) highlight functional analogies between existing synthetic adhesives and tree frogs regarding the fundamental mechanisms of attachment. We found that most existing tree-frog-inspired adhesives mimic the micropatterned surface of the ventral epidermis of frog pads. Geometrical and material properties differ between these synthetic adhesives and their biological model, which indicates similarity in appearance rather than function. Important internal functional components such as fiber-reinforcement and muscle fibers for attachment control have not been considered in the design of tree-frog-inspired adhesives. Experimental work on tree-frog-inspired adhesives suggests that the micropatterning of adhesives with low-aspect-ratio pillars enables crack arresting and the drainage of interstitial liquids, which both facilitate the generation of van der Waals forces. Our analysis of experimental work on tree-frog-inspired adhesives indicates that interstitial liquids such as the mucus secreted by tree frogs play a role in detachment. Based on these findings, we provide suggestions for the future design of biomimetic adhesives. Specifically, we propose to implement internal fiber-reinforcements inspired by the fibrous structures in frog pads to create mechanically reinforced soft adhesives for high-load applications. Contractile components may stimulate the design of actuated synthetic adhesives with fine-tunable control of attachment strength. An integrative approach is needed for the design of tree-frog-inspired adhesives that are functionally analogous with their biological paradigm.more » « less
-
Lightweight structures with bioinspired metamaterials, with their uniquely engineered properties not found in naturally occurring materials, have garnered significant attention for their potential in various engineering applications. This study explores the mechanical behavior of sandwich plate structures utilizing the Kresling origami pattern, fabricated through a straightforward 3D printing process. By conducting 3-point bending and compression tests, as well as simulations with Abaqus software, the research investigates the distinctive mechanical properties and performance enhancements these origami-inspired structures offer under mechanical loading. This study is noteworthy for being the first to investigate the bending characteristics of sandwich structures utilizing the two cell Kresling pattern or double Kresling, an area that has not been previously explored. Utilizing the Kresling structure in sandwich panels poses a challenge due to its rotational behavior. To address this, we employ a double Kresling pattern, which confines the rotation to the middle layer. This approach ensures that the outer layers remain stable, maintaining the overall integrity of the sandwich panel structure during deformation under mechanical loading. The findings reveal that the 3D-printed Kresling origami core significantly reduces weight while maintaining structural integrity, making it especially beneficial for aerospace engineering, where lightweight yet strong materials are crucial. This research highlights the potential of Kresling-patterned sandwich plates to improve efficiency and performance in supersonic vehicles, providing valuable insights into their structural efficiency and applicability in advanced engineering fields.more » « less
-
Soft-bodied animals, such as earthworms, are capable of contorting their body to squeeze through narrow spaces, create or enlarge burrows, and move on uneven ground. In many applications such as search and rescue, inspection of pipes and medical procedures, it may be useful to have a hollow-bodied robot with skin separating inside and outside. Textiles can be key to such skins. Inspired by earthworms, we developed two new robots: FabricWorm and MiniFabricWorm. We explored the application of fabric in soft robotics and how textile can be integrated along with other structural elements, such as three-dimensional (3D) printed parts, linear springs, and flexible nylon tubes. The structure of FabricWorm consists of one third the number of rigid pieces as compared to its predecessor Compliant Modular Mesh Worm-Steering (CMMWorm-S), while the structure of MiniFabricWorm consists of no rigid components. This article presents the design of such a mesh and its limitations in terms of structural softness. We experimentally measured the stiffness properties of these robots and compared them directly to its predecessors. FabricWorm and MiniFabricWorm are capable of peristaltic locomotion with a maximum speed of 33 cm/min (0.49 body-lengths/min) and 13.8 cm/min (0.25 body-lengths/min), respectively.more » « less
An official website of the United States government

