skip to main content

Title: Slippery nanoemulsion-infused porous surfaces (SNIPS): anti-fouling coatings that can host and sustain the release of water-soluble agents
We report the design of ‘slippery’ nanoemulsion-infused porous surfaces (SNIPS). These materials are strongly anti-fouling to a broad range of substances, including microorganisms. Infusion with water-in-oil nanoemulsions also endows these slippery coatings with the ability to host and control or sustain the release of water-soluble agents, including polymers, peptides, and nucleic acids, opening the door to new applications of liquid-infused materials.
Authors:
; ; ; ;
Award ID(s):
1720415
Publication Date:
NSF-PAR ID:
10315962
Journal Name:
Chemical Communications
Volume:
57
Issue:
94
ISSN:
1359-7345
Sponsoring Org:
National Science Foundation
More Like this
  1. Hydrogen bonding (HB) interactions are well known to impact the properties of water in the bulk and within hydrated materials. A series of Ni( ii ) complexes based on chelates containing N -(2-aminoethyl)-1-methylimidazole-2-carboxamide have been synthesized and fully characterized by single crystal X-ray diffraction, spectroscopic methods, and thermal analysis. The complexes reveal a variety of water cluster motifs dependent on the packing arrangement in the solid state. A key feature is the orientation of the carboxamide moiety, which leads to the formation of void spaces that accommodate water through HB interactions. The water motifs contain 1D water chains (streams), 2D tapes of infused rings (cascades), and isolated water dimers (pools). The HB motifs in the hydrated structures vary as a function of the crystal packing of the host molecules. Thermal analyses show a correlation between the HB motif in the hydrated crystals and the temperature range of the dehydration process. The conductivity of the hydrated crystals varies as a function of the crystal packing interactions between metal complexes.
  2. Stoebe, Thomas (Ed.)
    Rare-earth (RE) materials are currently used to fabricate permanent magnets through various additive manufacturing (AM) methods. Fused filament fabrication (FFF) is one of the most commonly used polymer-based AM methods and has recently been used to produce metal-matrix composites, known as “green parts,” using a metal powder-infused filament. The FFF method has gained much attention in various industries including the automotive, aerospace, and medical fields. Therefore, involving RE in the FFF process using magnetic powder-infused filaments promises to result in the fabrication of low-cost, efficient, and complex magnetic components based on application areas. This module introduces the FFF process and provides a case study for high school and technical college students to gain a fundamental understanding of how magnetic powders are infused and how parts are fabricated using this method.
  3. Engaging students in science learning that integrates disciplinary knowledge and practices such as computational thinking (CT) is a challenge that may represent unfamiliar territory for many teachers. CompHydro Baltimore is a collaborative partnership aimed at enacting Next Generation Science Standards (NGSS)–aligned instruction to support students in developing knowledge and practice reflective of the goals laid out in A Framework for K–12 Science Education (National Research Council 2012) “... that by the end of 12th grade, all students possess sufficient knowledge of science and engineering to engage in public discussion on related issues … and are careful consumers of scientific and technological information related to their everyday lives.” This article presents the results of a partnership that generated a new high school level curriculum and teacher professional development program that tackled the challenge of integrating hydrologic learning with computational thinking as applied to a real-world issue of flooding. CompHydro Baltimore produced Baltimore Floods, a six-lesson high school unit that builds students’ water literacy by engaging them in computational thinking (CT) and modeling practices as they learn about water system processes involved in urban flooding (See Computational Thinking and Associated Science Practices). CompHydro demonstrates that broad partnerships can address these challenges, bringingmore »together the diverse expertise necessary to develop innovative CT-infused science curriculum materials and the teacher supports needed for successful implementation.« less
  4. Introduction: Vascular diseases like abdominal aortic aneurysms (AAA) are characterized by a drastic remodeling of the vessel wall, accompanied with changes in the elastin and collagen content. At the macromolecular level, the elastin fibers in AAA have been reported to undergo significant structural alterations. While the undulations (waviness) of the collagen fibers is also reduced in AAA, very little is understood about changes in the collagen fibril at the sub-fiber level in AAA as well as in other vascular pathologies. Materials and Methods: In this study we investigated structural changes in collagen fibrils in human AAA tissue extracted at the time of vascular surgery and in aorta extracted from angiotensin II (AngII) infused ApoE−/− mouse model of AAA. Collagen fibril structure was examined using transmission electron microscopy and atomic force microscopy. Images were analyzed to ascertain length and depth of D-periodicity, fibril diameter and fibril curvature. Tissues were also stained using collagen hybridizing peptide (CHP) and analyzed using fluorescent microscopy and second harmonic generation (SHG) microscopy to locate regions of healthy and degraded collagen. Results: Abnormal collagen fibrils with compromised D-periodic banding were observed in the excised human tissue and in remodeled regions of AAA in AngII infused mice (Figuremore »1). These abnormal fibrils were characterized by statistically significant reduction in depths of D-periods and an increased curvature of collagen fibrils. These features were more pronounced in human AAA as compared to murine samples. Additionally, regions of abnormal collagen were located within the remodeled areas of AAA tissue and were distinct from healthy collagen regions as ascertained using CHP staining and SHG (Figure 1). Thoracic aorta from Ang II-infused mice, abdominal aorta from saline-infused mice, and abdominal aorta from non-AAA human controls did not contain abnormal collagen fibrils. Conclusions: The structural alterations in abnormal collagen fibrils appear similar to those reported for collagen fibrils subjected to mechanical overload or chronic inflammation in other tissues. Detection of abnormal collagen could be utilized to better understand the functional properties of the underlying extracellular matrix in vascular as well as other pathologies.« less
  5. Background:: Sandwich structures are progressively being used in various engineering applications due to the superior bending-stiffness-to-weight ratio of these structures. We adapted a novel technique to incorporate carbon nanotubes (CNTs) and polyhedral oligomeric silsesquioxanes (POSS) into a sandwich composite structure utilizing a sonochemical and high temperature vacuum assisted resin transfer molding technique. Objective:: The objective of this work was to create a sandwich composite structure comprised of a nanophased foam core and reinforced nanophased face sheets, and to examine the thermal and mechanical properties of the structure. To prepare sandwich structure, POSS nanoparticles were sonochemically attached to CNTs and dispersed in a high temperature resin system to make the face sheet materials and also coated on expandable thermoplastic microspheres for the fabrication of foam core materials. Method:: The nanophased foam core was fabricated with POSS infused thermoplastic microspheres (Expancel) using a Tetrahedron MTP-14 programmable compression molder. The reinforced nanophased face sheet were fabricated by infusing POSS coated CNT in epoxy resin and then curing into a compression stainless steel mold. Result:: Thermal analysis of POSS-infused thermoplastic microspheres foam (TMF) showed an increase in thermal stability in both nitrogen and oxygen atmospheres, 19% increase in thermal residue were observed for 4more »wt% GI-POSS TMF compared to neat TMF. Quasi-static compression results indicated significant increases (73%) in compressive modulus, and an increase (5%) in compressive strength for the 1 wt% EC-POSS/CNTs resin system. The nanophased sandwich structure constructed from the above resin system and the foam core system displayed an increase (9%) in modulus over the neat sandwich structure. Conclusion:: The incorporation of POSS-nanofillier in the foam core and POSS-coated nanotubes in the face sheet significantly improved the thermal and mechanical properties of sandwich structure. Furthermore, the sandwich structure that was constructed from nanophased resin system showed an increase in modulus, with buckling in the foam core but no visible cracking.« less