skip to main content


Title: Redefining and Validating Digital Biomarkers as Fluid, Dynamic Multi-Dimensional Digital Signal Patterns
“Digital biomarker” is a term broadly and indiscriminately applied and often limited in its conceptualization to mimic well-established biomarkers as defined and approved by regulatory agencies such as the United States Food and Drug Administration (FDA). There is a practical urgency to revisit the definition of a digital biomarker and expand it beyond current methods of identification and validation. Restricting the promise of digital technologies within the realm of currently defined biomarkers creates a missed opportunity. A whole new field of prognostic and early diagnostic digital biomarkers driven by data science and artificial intelligence can break the current cycle of high healthcare costs and low health quality that is being driven by today's chronic disease detection and treatment approaches. This new class of digital biomarkers will be dynamic and require developing new FDA approval pathways and next-generation gold standards.  more » « less
Award ID(s):
1914792 1664644 1645681
NSF-PAR ID:
10316052
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Frontiers in Digital Health
Volume:
3
ISSN:
2673-253X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Jenner, Adrianne (Ed.)
    With the recent approval by the FDA of the first disease-modifying drug for Alzheimer’s Disease (AD), personalized medicine will be increasingly important for appropriate management and counseling of patients with AD and those at risk. The growing availability of clinical biomarker data and data-driven computational modeling techniques provide an opportunity for new approaches to individualized AD therapeutic planning. In this paper, we develop a new mathematical model, based on AD cognitive, cerebrospinal fluid (CSF) and MRI biomarkers, to provide a personalized optimal treatment plan for individuals. This model is parameterized by biomarker data from the AD Neuroimaging Initiative (ADNI) cohort, a large multi-institutional database monitoring the natural history of subjects with AD and mild cognitive impairment (MCI). Optimal control theory is used to incorporate time-varying treatment controls and side-effects into the model, based on recent clinical trial data, to provide a personalized treatment regimen with anti-amyloid-beta therapy. In-silico treatment studies were conducted on the approved treatment, aducanumab, as well as on another promising anti-amyloid-beta therapy under evaluation, donanemab. Clinical trial simulations were conducted over both short-term (78 weeks) and long-term (10 years) periods with low-dose (6 mg/kg) and high-dose (10 mg/kg) regimens for aducanumab, and a single-dose regimen (1400 mg) for donanemab. Results confirm those of actual clinical trials showing a large and sustained effect of both aducanumab and donanemab on amyloid beta clearance. The effect on slowing cognitive decline was modest for both treatments, but greater for donanemab. This optimal treatment computational modeling framework can be applied to other single and combination treatments for both prediction and optimization, as well as incorporate new clinical trial data as it becomes available. 
    more » « less
  2. null (Ed.)
    Abstract Digital protein assays have great potential to advance immunodiagnostics because of their single-molecule sensitivity, high precision, and robust measurements. However, translating digital protein assays to acute clinical care has been challenging because it requires deployment of these assays with a rapid turnaround. Herein, we present a technology platform for ultrafast digital protein biomarker detection by using single-molecule counting of immune-complex formation events at an early, pre-equilibrium state. This method, which we term “pre-equilibrium digital enzyme-linked immunosorbent assay” (PEdELISA), can quantify a multiplexed panel of protein biomarkers in 10 µL of serum within an unprecedented assay incubation time of 15 to 300 seconds over a 104 dynamic range. PEdELISA allowed us to perform rapid monitoring of protein biomarkers in patients manifesting post-chimeric antigen receptor T-cell therapy cytokine release syndrome, with ∼30-minute sample-to-answer time and a sub–picograms per mL limit of detection. The rapid, sensitive, and low-input volume biomarker quantification enabled by PEdELISA is broadly applicable to timely monitoring of acute disease, potentially enabling more personalized treatment. 
    more » « less
  3. Digital biomarkers of mental health, created using data extracted from everyday technologies including smartphones, wearable devices, social media and computer interactions, have the opportunity to revolutionise mental health diagnosis and treatment by providing near-continuous unobtrusive and remote measures of behaviours associated with mental health symptoms. Machine learning models process data traces from these technologies to identify digital biomarkers. In this editorial, we caution clinicians against using digital biomarkers in practice until models are assessed for equitable predictions (‘model equity’) across demographically diverse patients at scale, behaviours over time, and data types extracted from different devices and platforms. We posit that it will be difficult for any individual clinic or large-scale study to assess and ensure model equity and alternatively call for the creation of a repository of open de-identified data for digital biomarker development. 
    more » « less
  4. Abstract Background

    Blood-based biomarkers for diagnosing active tuberculosis (TB), monitoring treatment response, and predicting risk of progression to TB disease have been reported. However, validation of the biomarkers across multiple independent cohorts is scarce. A robust platform to validate TB biomarkers in different populations with clinical end points is essential to the development of a point-of-care clinical test. NanoString nCounter technology is an amplification-free digital detection platform that directly measures mRNA transcripts with high specificity. Here, we determined whether NanoString could serve as a platform for extensive validation of candidate TB biomarkers.

    Methods

    The NanoString platform was used for performance evaluation of existing TB gene signatures in a cohort in which signatures were previously evaluated on an RNA-seq dataset. A NanoString codeset that probes 107 genes comprising 12 TB signatures and 6 housekeeping genes (NS-TB107) was developed and applied to total RNA derived from whole blood samples of TB patients and individuals with latent TB infection (LTBI) from South India. The TBSignatureProfiler tool was used to score samples for each signature. An ensemble of machine learning algorithms was used to derive a parsimonious biomarker.

    Results

    Gene signatures present in NS-TB107 had statistically significant discriminative power for segregating TB from LTBI. Further analysis of the data yielded a NanoString 6-gene set (NANO6) that when tested on 10 published datasets was highly diagnostic for active TB.

    Conclusions

    The NanoString nCounter system provides a robust platform for validating existing TB biomarkers and deriving a parsimonious gene signature with enhanced diagnostic performance.

     
    more » « less
  5. The emergence of electrowetting-on-dielectric (EWOD) in the early 2000s made the once-obscure electrowetting phenomenon practical and led to numerous activities over the last two decades. As an eloquent microscale liquid handling technology that gave birth to digital microfluidics, EWOD has served as the basis for many commercial products over two major application areas: optical, such as liquid lenses and reflective displays, and biomedical, such as DNA library preparation and molecular diagnostics. A number of research or start-up companies ( e.g. , Phillips Research, Varioptic, Liquavista, and Advanced Liquid Logic) led the early commercialization efforts and eventually attracted major companies from various industry sectors ( e.g. , Corning, Amazon, and Illumina). Although not all of the pioneering products became an instant success, the persistent growth of liquid lenses and the recent FDA approvals of biomedical analyzers proved that EWOD is a powerful tool that deserves a wider recognition and more aggressive exploration. This review presents the history around major EWOD products that hit the market to show their winding paths to commercialization and summarizes the current state of product development to peek into the future. In providing the readers with a big picture of commercializing EWOD and digital microfluidics technology, our goal is to inspire further research exploration and new entrepreneurial adventures. 
    more » « less