skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reactive Multilayers and Coatings Fabricated by Spray Assembly: Influence of Polymer Structure and Process Parameters on Multiscale Structure and Interfacial Properties
Award ID(s):
1720415
PAR ID:
10316122
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Chemistry of Materials
Volume:
34
Issue:
3
ISSN:
0897-4756
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Secondary forest regrowth shapes community succession and biogeochemistry for decades, including in the Upper Great Lakes region. Vegetation models encapsulate our understanding of forest function, and whether models can reproduce multi‐decadal succession patterns is an indication of our ability to predict forest responses to future change. We test the ability of a vegetation model to simulate C cycling and community composition during 100 years of forest regrowth following stand‐replacing disturbance, asking (a) Which processes and parameters are most important to accurately model Upper Midwest forest succession? (b) What is the relative importance of model structure versus parameter values to these predictions? We ran ensembles of the Ecosystem Demography model v2.2 with different representations of processes important to competition for light. We compared the magnitude of structural and parameter uncertainty and assessed which sub‐model–parameter combinations best reproduced observed C fluxes and community composition. On average, our simulations underestimated observed net primary productivity (NPP) and leaf area index (LAI) after 100 years and predicted complete dominance by a single plant functional type (PFT). Out of 4,000 simulations, only nine fell within the observed range of both NPP and LAI, but these predicted unrealistically complete dominance by either early hardwood or pine PFTs. A different set of seven simulations were ecologically plausible but under‐predicted observed NPP and LAI. Parameter uncertainty was large; NPP and LAI ranged from ~0% to >200% of their mean value, and any PFT could become dominant. The two parameters that contributed most to uncertainty in predicted NPP were plant–soil water conductance and growth respiration, both unobservable empirical coefficients. We conclude that (a) parameter uncertainty is more important than structural uncertainty, at least for ED‐2.2 in Upper Midwest forests and (b) simulating both productivity and plant community composition accurately without physically unrealistic parameters remains challenging for demographic vegetation models. 
    more » « less
  2. Abstract We present an event structure classification empirically derived from inferential properties annotated on sentence- and document-level Universal Decompositional Semantics (UDS) graphs. We induce this classification jointly with semantic role, entity, and event-event relation classifications using a document-level generative model structured by these graphs. To support this induction, we augment existing annotations found in the UDS1.0 dataset, which covers the entirety of the English Web Treebank, with an array of inferential properties capturing fine-grained aspects of the temporal and aspectual structure of events. The resulting dataset (available at decomp.io) is the largest annotation of event structure and (partial) event coreference to date. 
    more » « less