skip to main content


Title: Delay-Tolerant Data Fusion for Underwater Acoustic Tracking Networks
We consider a network of distributed underwater sensors whose task is to monitor the movement of objects across an area. The sensors measure the strength of signals emanated by the objects and convey the measurements to the local fusion centers. Multiple fusion centers are deployed to cover an arbitrarily large area. The fusion centers communicate with each other to achieve consensus on the estimated locations of the moving objects. We introduce two efficient methods for data fusion of distributed partial estimates when delay in communication is not negligible. We concentrate on the minimum mean squared error (MMSE) global estimator, and evaluate the performance of these fusion methods in the context of multiple-object tracking via extended Kalman filtering. Numerical results show the superior performance compared to the case when delay is ignored.  more » « less
Award ID(s):
1726512
NSF-PAR ID:
10316507
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Underwater Communications and Networking
ISSN:
2471-1268
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Video scene analysis is a well-investigated area where researchers have devoted efforts to detect and classify people and objects in the scene. However, real-life scenes are more complex: the intrinsic states of the objects (e.g., machine operating states or human vital signals) are often overlooked by vision-based scene analysis. Recent work has proposed a radio frequency (RF) sensing technique, wireless vibrometry, that employs wireless signals to sense subtle vibrations from the objects and infer their internal states. We envision that the combination of video scene analysis with wireless vibrometry form a more comprehensive understanding of the scene, namely "rich scene analysis". However, the RF sensors used in wireless vibrometry only provide time series, and it is challenging to associate these time series data with multiple real-world objects. We propose a real-time RF-vision sensor fusion system, Capricorn, that efficiently builds a cross-modal correspondence between visual pixels and RF time series to better understand the complex natures of a scene. The vision sensors in Capricorn model the surrounding environment in 3D and obtain the distances of different objects. In the RF domain, the distance is proportional to the signal time-of-flight (ToF), and we can leverage the ToF to separate the RF time series corresponding to each object. The RF-vision sensor fusion in Capricorn brings multiple benefits. The vision sensors provide environmental contexts to guide the processing of RF data, which helps us select the most appropriate algorithms and models. Meanwhile, the RF sensor yields additional information that is originally invisible to vision sensors, providing insight into objects' intrinsic states. Our extensive evaluations show that Capricorn real-timely monitors multiple appliances' operating status with an accuracy of 97%+ and recovers vital signals like respirations from multiple people. A video (https://youtu.be/b-5nav3Fi78) demonstrates the capability of Capricorn. 
    more » « less
  2. We study a heterogeneous two-tier wireless sensor network in which N heterogeneous access points (APs) collect sensing data from densely distributed sensors and then forward the data to M heterogeneous fusion centers (FCs). This heterogeneous node deployment problem is modeled as a quantization problem with distortion defined as the total power consumption of the network. The necessary conditions of the optimal AP and FC node deployment are explored in this paper. We provide a variation of Voronoi diagrams as the optimal cell partition for this network, and show that each AP should be placed between its connected FC and the geometric center of its cell partition. In addition, we propose a heterogeneous two-tier Lloyd-like algorithm to optimize the node deployment. Simulation results show that our proposed algorithm outperforms the existing methods like Minimum Energy Routing, Agglomerative Clustering, and Divisive Clustering, on average. 
    more » « less
  3. null (Ed.)
    A quickest change detection problem is considered in a sensor network with observations whose statistical dependency structure across the sensors before and after the change is described by a decomposable graphical model (DGM). Distributed computation methods for this problem are proposed that are capable of producing the optimum centralized test statistic. The DGM leads to the proper way to collect nodes into local groups equivalent to cliques in the graph, such that a clique statistic which summarizes all the clique sensor data can be computed within each clique. The clique statistics are transmitted to a decision maker to produce the optimum centralized test statistic. In order to further improve communication efficiency, an ordered transmission approach is proposed where transmissions of the clique statistics to the fusion center are ordered and then adaptively halted when sufficient information is accumulated. This procedure is always guaranteed to provide the optimal change detection performance, despite not transmitting all the statistics from all the cliques. A lower bound on the average number of transmissions saved by ordered transmissions is provided and for the case where the change seldom occurs the lower bound approaches approximately half the number of cliques provided a well behaved distance measure between the distributions of the sensor observations before and after the change is sufficiently large. We also extend the approach to the case when the graph structure is different under each hypothesis. Numerical results show significant savings using the ordered transmission approach and validate the theoretical findings. 
    more » « less
  4. In mixed multi-view data, multiple sets of diverse features are measured on the same set of samples. By integrating all available data sources, we seek to discover common group structure among the samples that may be hidden in individualistic cluster analyses of a single data view. While several techniques for such integrative clustering have been explored, we propose and develop a convex formalization that enjoys strong empirical performance and inherits the mathematical properties of increasingly popular convex clustering methods. Specifically, our Integrative Generalized Convex Clustering Optimization (iGecco) method employs different convex distances, losses, or divergences for each of the different data views with a joint convex fusion penalty that leads to common groups. Additionally, integrating mixed multi-view data is often challenging when each data source is high-dimensional. To perform feature selection in such scenarios, we develop an adaptive shifted group-lasso penalty that selects features by shrinking them towards their loss-specific centers. Our so-called iGecco+ approach selects features from each data view that are best for determining the groups, often leading to improved integrative clustering. To solve our problem, we develop a new type of generalized multi-block ADMM algorithm using sub-problem approximations that more efficiently fits our model for big data sets. Through a series of numerical experiments and real data examples on text mining and genomics, we show that iGecco+ achieves superior empirical performance for high-dimensional mixed multi-view data. 
    more » « less
  5. null (Ed.)
    Abstract Edge computing is emerging as a new paradigm to allow processing data near the edge of the network, where the data is typically generated and collected. This enables critical computations at the edge in applications such as Internet of Things (IoT), in which an increasing number of devices (sensors, cameras, health monitoring devices, etc.) collect data that needs to be processed through computationally intensive algorithms with stringent reliability, security and latency constraints. Our key tool is the theory of coded computation, which advocates mixing data in computationally intensive tasks by employing erasure codes and offloading these tasks to other devices for computation. Coded computation is recently gaining interest, thanks to its higher reliability, smaller delay, and lower communication costs. In this paper, we develop a private and rateless adaptive coded computation (PRAC) algorithm for distributed matrix-vector multiplication by taking into account (1) the privacy requirements of IoT applications and devices, and (2) the heterogeneous and time-varying resources of edge devices. We show that PRAC outperforms known secure coded computing methods when resources are heterogeneous. We provide theoretical guarantees on the performance of PRAC and its comparison to baselines. Moreover, we confirm our theoretical results through simulations and implementations on Android-based smartphones. 
    more » « less