skip to main content


Title: Delay-Tolerant Distributed Inference in Tracking Networks
This paper discusses asynchronous distributed inference in object tracking. Unlike many studies, which assume that the delay in communication between partial estimators and the central station is negligible, our study focuses on the problem of asynchronous distributed inference in the presence of delays. We introduce an efficient data fusion method for combining the distributed estimates, where delay in communications is not negligible. To overcome the delay, predictions are made for the state of the system based on the most current available information from partial estimators. Simulation results show the efficacy of the methods proposed.  more » « less
Award ID(s):
1726512 1845833 1815349
NSF-PAR ID:
10316503
Author(s) / Creator(s):
; ;
Editor(s):
Paolo Spagnolo
Date Published:
Journal Name:
IEEE sensors journal
ISSN:
1558-1748
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider a network of distributed underwater sensors whose task is to monitor the movement of objects across an area. The sensors measure the strength of signals emanated by the objects and convey the measurements to the local fusion centers. Multiple fusion centers are deployed to cover an arbitrarily large area. The fusion centers communicate with each other to achieve consensus on the estimated locations of the moving objects. We introduce two efficient methods for data fusion of distributed partial estimates when delay in communication is not negligible. We concentrate on the minimum mean squared error (MMSE) global estimator, and evaluate the performance of these fusion methods in the context of multiple-object tracking via extended Kalman filtering. Numerical results show the superior performance compared to the case when delay is ignored. 
    more » « less
  2. Abstract Motivation

    Cell function is regulated by gene regulatory networks (GRNs) defined by protein-mediated interaction between constituent genes. Despite advances in experimental techniques, we can still measure only a fraction of the processes that govern GRN dynamics. To infer the properties of GRNs using partial observation, unobserved sequential processes can be replaced with distributed time delays, yielding non-Markovian models. Inference methods based on the resulting model suffer from the curse of dimensionality.

    Results

    We develop a simulation-based Bayesian MCMC method employing an approximate likelihood for the efficient and accurate inference of GRN parameters when only some of their products are observed. We illustrate our approach using a two-step activation model: an activation signal leads to the accumulation of an unobserved regulatory protein, which triggers the expression of observed fluorescent proteins. With prior information about observed fluorescent protein synthesis, our method successfully infers the dynamics of the unobserved regulatory protein. We can estimate the delay and kinetic parameters characterizing target regulation including transcription, translation, and target searching of an unobserved protein from experimental measurements of the products of its target gene. Our method is scalable and can be used to analyze non-Markovian models with hidden components.

    Availability and implementation

    Our code is implemented in R and is freely available with a simple example data at https://github.com/Mathbiomed/SimMCMC.

     
    more » « less
  3. Summary

    The paper studies estimation of partially linear hazard regression models with varying coefficients for multivariate survival data. A profile pseudo-partial-likelihood estimation method is proposed. The estimation of the parameters of the linear part is accomplished via maximization of the profile pseudo-partial-likelihood, whereas the varying-coefficient functions are considered as nuisance parameters that are profiled out of the likelihood. It is shown that the estimators of the parameters are root n consistent and the estimators of the non-parametric coefficient functions achieve optimal convergence rates. Asymptotic normality is obtained for the estimators of the finite parameters and varying-coefficient functions. Consistent estimators of the asymptotic variances are derived and empirically tested, which facilitate inference for the model. We prove that the varying-coefficient functions can be estimated as well as if the parametric components were known and the failure times within each subject were independent. Simulations are conducted to demonstrate the performance of the estimators proposed. A real data set is analysed to illustrate the methodology proposed.

     
    more » « less
  4. Abstract

    Estimating population‐level effects of a vaccine is challenging because there may be interference, that is, the outcome of one individual may depend on the vaccination status of another individual. Partial interference occurs when individuals can be partitioned into groups such that interference occurs only within groups. In the absence of interference, inverse probability weighted (IPW) estimators are commonly used to draw inference about causal effects of an exposure or treatment. Tchetgen Tchetgen and VanderWeele proposed a modified IPW estimator for causal effects in the presence of partial interference. Motivated by a cholera vaccine study in Bangladesh, this paper considers an extension of the Tchetgen Tchetgen and VanderWeele IPW estimator to the setting where the outcome is subject to right censoring using inverse probability of censoring weights (IPCW). Censoring weights are estimated using proportional hazards frailty models. The large sample properties of the IPCW estimators are derived, and simulation studies are presented demonstrating the estimators' performance in finite samples. The methods are then used to analyze data from the cholera vaccine study.

     
    more » « less
  5. Riahi, Mohamed Kamel (Ed.)
    Numerical solution of partial differential equations on parallel computers using domain decomposition usually requires synchronization and communication among the processors. These operations often have a significant overhead in terms of time and energy. In this paper, we propose communication-efficient parallel algorithms for solving partial differential equations that alleviate this overhead. First, we describe an asynchronous algorithm that removes the requirement of synchronization and checks for termination in a distributed fashion while maintaining the provision to restart iterations if necessary. Then, we build on the asynchronous algorithm to propose an event-triggered communication algorithm that communicates the boundary values to neighboring processors only at certain iterations, thereby reducing the number of messages while maintaining similar accuracy of solution. We demonstrate our algorithms on a successive over-relaxation solver for the pressure Poisson equation arising from variable density incompressible multiphase flows in 3-D and show that our algorithms improve time and energy efficiency. 
    more » « less