Abstract We demonstrate a simple, femtosecond-scale wavelength tunable, subwavelength-thick nanostructure that performs efficient wavelength conversion from the infrared to the ultraviolet. The output wavelength can be tuned by varying the input power of the infrared pump beam and/or relative delay of the control beam with respect to the pump beam, and does not require any external realignment of the system. The nanostructure is made of chalcogenide glass that possesses strong Kerr nonlinearity and high linear refractive index, leading to strong field enhancement at Mie resonances. Although, as many other materials, chalcogenide glasses absorb in the ultraviolet range, fundamental phase-locking mechanism between the pump and the inhomogeneous portion of the third-harmonic signal enables ultraviolet transmission with little or no absorption.
more »
« less
Near-infrared to ultra-violet frequency conversion in chalcogenide metasurfaces
Abstract Chalcogenide photonics offers unique solutions for a broad range of applications from mid-infrared sensing to integrated, ultrafast, ultrahigh-bandwidth signal processing. However, to date its usage has been limited to the infrared part of the electromagnetic spectrum, thus avoiding ultraviolet and visible ranges due to absorption of chalcogenide glasses. Here, we experimentally demonstrate and report near-infrared to ultraviolet frequency conversion in an As 2 S 3 -based metasurface, enabled by a phase locking mechanism between the pump and the inhomogeneous portion of the third harmonic signal. Due to the phase locking, the inhomogeneous component co-propagates with the pump pulse and encounters the same effective dispersion as the infrared pump, and thus experiences little or no absorption, consequently opening previously unexploited spectral range for chalcogenide glass science and applications, despite the presence of strong material absorption in this range.
more »
« less
- PAR ID:
- 10316521
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Kramers–Kronig relation (KKR) has a wide range of applications in extreme ultraviolet (XUV) and x-ray spectroscopy. However, the validity of KKR for many of these applications has not been systematically studied, while it is known to require careful attention in nonlinear and pump–probe experiments in optical domain spectroscopy. Here, we study the validity of KKR in XUV attosecond transient absorption spectroscopy pump–probe measurements both experimentally and theoretically using argon Fano resonances as a case study. Experiments are enabled by a phase-resolved method dubbed Complex Attosecond Transient-absorption Spectroscopy (CATS). Although the estimations based on the rotating-wave approximation suggest that KKR violation could be expected in the studied case, our results validate KKR and provide a solid basis for its application in a broad range of attosecond spectroscopy experiments.more » « less
-
Abstract Chalcogenide perovskites have emerged as promising semiconductor materials due to their appealing properties, including tunable bandgaps, high absorption coefficients, reasonable carrier lifetimes and mobilities, excellent chemical stability, and environmentally benign nature. However, beyond the well‐studied BaZrS3, reports on chalcogenide perovskite thin films with diverse compositions are scarce. In this study, the realization of four different types of chalcogenide perovskite thin films with controlled phases, through CS2annealing of amorphous chalcogenide precursor films deposited by pulsed laser deposition (PLD), is reported. This achievement is guided by a thorough theoretical investigation of the phase stability of chalcogenide perovskites. Upon crystallization in the distorted perovskite phase, all materials exhibit photoluminescence (PL) with peak positions in the visible range, consistent with their expected bandgap values. However, the full‐width‐at‐half‐maximum (FWHM) of the PL spectra varies significantly across these materials, ranging from 99 meV for SrHfS3to 231 meV for BaHfS3. The difference is attributed to the difference in kinetic barriers between local structural motifs for the Sr and Ba compounds. The findings underscore the promise of chalcogenide perovskite thin films as an alternative to traditional halide perovskites for optoelectronic applications, while highlighting the challenges in optimizing their synthesis and performance.more » « less
-
The versatility of early transition metal chalcogenide nanomaterials, including chalcogenide perovskites, has attracted enormous attention for a variety of applications, such as photovoltaics, photocatalysis, and optoelectronic devices. These nanomaterials exhibit unique electronic and optical properties, allowing for a broad range of applications, depending on their chemical composition and crystal structure. However, solution-phase synthesis of early transition metal chalcogenide nanocrystals is challenging due, in part, to their high crystallization energy and oxophilicity. In this feature article, we explore various synthetic routes reported for inorganic ternary and binary sulfide and selenide nanomaterials that include transition metals from groups 3, 4, and 5. By systematically comparing different synthetic approaches, we identify trends and insights into the chemistry of these chalcogenide nanomaterials.more » « less
-
The application of high-power, few-cycle, long-wave infrared (LWIR, 8–20 µm) pulses in strong-field physics is largely unexplored due to the lack of suitable sources. However, the generation of intense pulses with >6 µm wavelength range is becoming increasingly feasible with the recent advances in high-power ultrashort lasers in the middle-infrared range that can serve as a pump for optical parametric amplifiers (OPA). Here we experimentally demonstrate the feasibility of this approach by building an OPA pumped at 2.4 µm that generates 93 µJ pulses at 9.5 µm, 1 kHz repetition rate with sub-two-cycle pulse duration, 1.6 GW peak power, and excellent beam quality. The results open a wide range of applications in attosecond physics (especially for studies of condensed phase samples), remote sensing, and biophotonics.more » « less
An official website of the United States government

