skip to main content


Title: All-optical tunable wavelength conversion in opaque nonlinear nanostructures
Abstract We demonstrate a simple, femtosecond-scale wavelength tunable, subwavelength-thick nanostructure that performs efficient wavelength conversion from the infrared to the ultraviolet. The output wavelength can be tuned by varying the input power of the infrared pump beam and/or relative delay of the control beam with respect to the pump beam, and does not require any external realignment of the system. The nanostructure is made of chalcogenide glass that possesses strong Kerr nonlinearity and high linear refractive index, leading to strong field enhancement at Mie resonances. Although, as many other materials, chalcogenide glasses absorb in the ultraviolet range, fundamental phase-locking mechanism between the pump and the inhomogeneous portion of the third-harmonic signal enables ultraviolet transmission with little or no absorption.  more » « less
Award ID(s):
1936276 1846766
NSF-PAR ID:
10351106
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Nanophotonics
Volume:
11
Issue:
17
ISSN:
2192-8614
Page Range / eLocation ID:
4027 to 4035
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Chalcogenide photonics offers unique solutions for a broad range of applications from mid-infrared sensing to integrated, ultrafast, ultrahigh-bandwidth signal processing. However, to date its usage has been limited to the infrared part of the electromagnetic spectrum, thus avoiding ultraviolet and visible ranges due to absorption of chalcogenide glasses. Here, we experimentally demonstrate and report near-infrared to ultraviolet frequency conversion in an As 2 S 3 -based metasurface, enabled by a phase locking mechanism between the pump and the inhomogeneous portion of the third harmonic signal. Due to the phase locking, the inhomogeneous component co-propagates with the pump pulse and encounters the same effective dispersion as the infrared pump, and thus experiences little or no absorption, consequently opening previously unexploited spectral range for chalcogenide glass science and applications, despite the presence of strong material absorption in this range. 
    more » « less
  2. The application of high-power, few-cycle, long-wave infrared (LWIR, 8–20 µm) pulses in strong-field physics is largely unexplored due to the lack of suitable sources. However, the generation of intense pulses with >6 µm wavelength range is becoming increasingly feasible with the recent advances in high-power ultrashort lasers in the middle-infrared range that can serve as a pump for optical parametric amplifiers (OPA). Here we experimentally demonstrate the feasibility of this approach by building an OPA pumped at 2.4 µm that generates 93 µJ pulses at 9.5 µm, 1 kHz repetition rate with sub-two-cycle pulse duration, 1.6 GW peak power, and excellent beam quality. The results open a wide range of applications in attosecond physics (especially for studies of condensed phase samples), remote sensing, and biophotonics.

     
    more » « less
  3. Abstract

    This work presents a low‐cost, large‐scale nanofabrication approach that combines imprint lithography and silver doping (IL‐SD) to pattern chalcogenide glass (ChG) films for realizing IR devices. The IL‐SD method involves controled photodoping of silver (Ag) atoms into ChG films and selective removing of undoped ChG. For photodoping of Ag, an Ag‐coated elastomer stamp is brought in contact with the ChG film and exposed to ultraviolet light, and subsequently, the Ag atoms are photo‐dissolved into the ChG film following the nanopatterns on the elastomer stamp. Due to the high wet‐etching selectivity of the undoped ChG to Ag‐doped one, the ChG film can be precisely patterned with a spatial resolution on the order of a few tens of nanometers. Also, by controling the lateral diffusion of Ag atoms during ultraviolet exposure, it is possible to adjust the size of the final patterns formed in the ChG film. As an application demonstration of the IL‐SD process, the As2S3‐based near‐infrared photonic crystals (PhCs) in the wavelength range and flexible midinfrared PhCs are formed, and their optical resonances are investigated. The IL‐SD process enables the low‐cost fabrication of ChG nanostructures on different substrate materials and gives a great promise to realize various IR devices.

     
    more » « less
  4. Abstract

    The advantages of low cost, compact size, and reduced power consumption makes a photonic chip‐based ultrafast laser source an appealing technology for diverse applications such as all‐optical signal processing, frequency metrology, spectroscopy, and sensing. To date, on‐chip ultrafast sources are typically generated by microresonator‐based Kerr‐comb solitons, which require precise phase tuning and frequency agile lasers to access the soliton state. Here, this work reports the first experimental demonstration of an externally pumped on‐chip ultrafast soliton laser source based on Raman soliton self‐frequency shift. By capitalizing on strong optical nonlinearity and versatile dispersion control in Ge28Sb12Se60chalcogenide glass waveguides, 185 fs duration Raman soliton generation has been demonstrated, possessing continuous wavelength tunability from 1589 to 1807 nm with signal‐to‐noise ratios consistently exceeding 65 dB. The source operates with pump pulse energies as low as 1.08 pJ, representing over three orders of magnitude improvement compared to fiber‐based Raman soliton sources. In addition, the generated solitons exhibit excellent spectral purity and stability free from parasitic sidebands. These experimental results are further validated by theoretical analysis, revealing insights into the soliton dynamics and critical device design guidelines. This work therefore enables a new class of broadly tunable, energy‐efficient, compact, and potentially cost‐effective on‐chip ultrafast laser sources.

     
    more » « less
  5. Abstract

    Subwavelength periodic confinement can collectively and selectively enhance local light intensity and enable control over the photoinduced phase transformations at the nanometer scale. Standard nanofabrication process can result in geometrical and compositional inhomogeneities in optical phase change materials, especially chalcogenides, as those materials exhibit poor chemical and thermal stability. Here the self‐assembled planar chalcogenide nanostructured array is demonstrated with resonance‐enhanced light emission to create an all‐dielectric optical metasurface, by taking advantage of the fluid properties associated with solution‐processed films. A patterned silicon membrane serves as a template for shaping the chalcogenide metasurface structure. Solution‐processed arsenic sulfide metasurface structures are self‐assembled in the suspended 250 nm silicon membrane templates. The periodic nanostructure dramatically manifests the local light–matter interaction such as absorption of incident photons, Raman emission, and photoluminescence. Also, the thermal distribution is modified by the boundaries and thus the photothermal crystallization process, leading to the formation of anisotropic nanoemitters within the field enhancement area. This hybrid structure shows wavelength‐selective anisotropic photoluminescence, which is a characteristic behavior of the collective response of the resonant‐guided modes in a periodic nanostructure. The resonance‐enhanced Purcell effect can manifest the quantum efficiency of localized light emission.

     
    more » « less