Abstract Chalcogenide photonics offers unique solutions for a broad range of applications from mid-infrared sensing to integrated, ultrafast, ultrahigh-bandwidth signal processing. However, to date its usage has been limited to the infrared part of the electromagnetic spectrum, thus avoiding ultraviolet and visible ranges due to absorption of chalcogenide glasses. Here, we experimentally demonstrate and report near-infrared to ultraviolet frequency conversion in an As 2 S 3 -based metasurface, enabled by a phase locking mechanism between the pump and the inhomogeneous portion of the third harmonic signal. Due to the phase locking, the inhomogeneous component co-propagates with the pump pulse and encounters the same effective dispersion as the infrared pump, and thus experiences little or no absorption, consequently opening previously unexploited spectral range for chalcogenide glass science and applications, despite the presence of strong material absorption in this range.
more »
« less
All-optical tunable wavelength conversion in opaque nonlinear nanostructures
Abstract We demonstrate a simple, femtosecond-scale wavelength tunable, subwavelength-thick nanostructure that performs efficient wavelength conversion from the infrared to the ultraviolet. The output wavelength can be tuned by varying the input power of the infrared pump beam and/or relative delay of the control beam with respect to the pump beam, and does not require any external realignment of the system. The nanostructure is made of chalcogenide glass that possesses strong Kerr nonlinearity and high linear refractive index, leading to strong field enhancement at Mie resonances. Although, as many other materials, chalcogenide glasses absorb in the ultraviolet range, fundamental phase-locking mechanism between the pump and the inhomogeneous portion of the third-harmonic signal enables ultraviolet transmission with little or no absorption.
more »
« less
- PAR ID:
- 10351106
- Date Published:
- Journal Name:
- Nanophotonics
- Volume:
- 11
- Issue:
- 17
- ISSN:
- 2192-8614
- Page Range / eLocation ID:
- 4027 to 4035
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We report Ge23Sb7S70 chalcogenide ring resonators with up to 8 × 104 quality factors operating around 3.6 µm wavelength fabricated through e-beam lithography. Their rib waveguide geometry can be engineered to support close-to-zero dispersion modes needed for mid-infrared microcomb generation.more » « less
-
We experimentally demonstrate that a probe beam at one wavelength, although exhibiting a weak nonlinear response on its own, can be modulated and controlled by a pump beam at another wavelength in plasmonic nanosuspensions, leading to ring-shaped pattern generation. In particular, we show that the probe and pump wavelengths can be interchanged, but the hollow beam patterns appear only in the probe beam, thanks to the gold nanosuspensions that exhibit a strong nonlinear response to pump beam illumination at the plasmonic resonant frequencies. Colloidal suspensions consisting of either gold nanospheres or gold nanorods are employed as nonlinear media, which give rise to refractive index changes and cross-phase modulation between the two beams. We perform a series of experiments to examine the dynamics of hollow beam generation at a fixed probe power as the pump power is varied and find that nonlinear beam shaping has a different power threshold in different nanosuspensions. Our results will enhance the understanding of nonlinear light–matter interactions in plasmonic nanosuspensions, which may be useful for applications in controlling light by light and in optical limiting.more » « less
-
The application of high-power, few-cycle, long-wave infrared (LWIR, 8–20 µm) pulses in strong-field physics is largely unexplored due to the lack of suitable sources. However, the generation of intense pulses with >6 µm wavelength range is becoming increasingly feasible with the recent advances in high-power ultrashort lasers in the middle-infrared range that can serve as a pump for optical parametric amplifiers (OPA). Here we experimentally demonstrate the feasibility of this approach by building an OPA pumped at 2.4 µm that generates 93 µJ pulses at 9.5 µm, 1 kHz repetition rate with sub-two-cycle pulse duration, 1.6 GW peak power, and excellent beam quality. The results open a wide range of applications in attosecond physics (especially for studies of condensed phase samples), remote sensing, and biophotonics.more » « less
-
While interferometric methods exist for classifying vortex states of light, these techniques usually require destroying the beam of interest to determine the light’s OAM. A recent two-color pump-probe experiment employed strong field ionization and beam sculpting to classify vortex beams. Here, we propose an alternative strong-field method for distinguishing OAM states of light which does not require beam sculpting and instead utilizes a noncollinear terahertz standing wave to probe ionized electrons. We then use classical trajectory Monte Carlo (CTMC) methods to simulate strong-field ionization of helium under this configuration with the terahertz field both on and off. We find that the resulting electron momenta distributions can be used to extract the OAM of the beam, as long as the vortex beam spot size does not exceed 1/4 the terahertz pulse’s wavelength.more » « less
An official website of the United States government

