skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Percolation of temporal hierarchical mobility networks during COVID-19
Percolation theory is essential for understanding disease transmission patterns on the temporal mobility networks. However, the traditional approach of the percolation process can be inefficient when analysing a large-scale, dynamic network for an extended period. Not only is it time-consuming but it is also hard to identify the connected components. Recent studies demonstrate that spatial containers restrict mobility behaviour, described by a hierarchical topology of mobility networks. Here, we leverage crowd-sourced, large-scale human mobility data to construct temporal hierarchical networks composed of over 175 000 block groups in the USA. Each daily network contains mobility between block groups within a Metropolitan Statistical Area (MSA), and long-distance travels across the MSAs. We examine percolation on both levels and demonstrate the changes of network metrics and the connected components under the influence of COVID-19. The research reveals the presence of functional subunits even with high thresholds of mobility. Finally, we locate a set of recurrent critical links that divide components resulting in the separation of core MSAs. Our findings provide novel insights into understanding the dynamical community structure of mobility networks during disruptions and could contribute to more effective infectious disease control at multiple scales. This article is part of the theme issue ‘Data science approaches to infectious disease surveillance’.  more » « less
Award ID(s):
2047488
PAR ID:
10316717
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Volume:
380
Issue:
2214
ISSN:
1364-503X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract During outbreaks of emerging infectious diseases, internationally connected cities often experience large and early outbreaks, while rural regions follow after some delay. This hierarchical structure of disease spread is influenced primarily by the multiscale structure of human mobility. However, during the COVID-19 epidemic, public health responses typically did not take into consideration the explicit spatial structure of human mobility when designing nonpharmaceutical interventions (NPIs). NPIs were applied primarily at national or regional scales. Here, we use weekly anonymized and aggregated human mobility data and spatially highly resolved data on COVID-19 cases at the municipality level in Mexico to investigate how behavioral changes in response to the pandemic have altered the spatial scales of transmission and interventions during its first wave (March–June 2020). We find that the epidemic dynamics in Mexico were initially driven by exports of COVID-19 cases from Mexico State and Mexico City, where early outbreaks occurred. The mobility network shifted after the implementation of interventions in late March 2020, and the mobility network communities became more disjointed while epidemics in these communities became increasingly synchronized. Our results provide dynamic insights into how to use network science and epidemiological modeling to inform the spatial scale at which interventions are most impactful in mitigating the spread of COVID-19 and infectious diseases in general. 
    more » « less
  2. We propose a structure-preserving model-reduction methodology for large-scale dynamic networks with tightly-connected components. First, the coherent groups are identified by a spectral clustering algorithm on the graph Laplacian matrix that models the network feedback. Then, a reduced network is built, where each node represents the aggregate dynamics of each coherent group, and the reduced network captures the dynamic coupling between the groups. We provide an upper bound on the approximation error when the network graph is randomly generated from a weight stochastic block model. Finally, numerical experiments align with and validate our theoretical findings. 
    more » « less
  3. Infectious disease spread within the human population can be conceptualized as a complex system composed of individuals who interact and transmit viruses through spatio-temporal processes that manifest across and between scales. The complexity of this system ultimately means that the spread of infectious diseases is difficult to understand, predict, and respond to effectively. Research interest in GeoAI for public health has been fueled by the increased availability of rich data sources such as human mobility data, OpenStreetMap data, contact tracing data, symptomatic online surveys, retail and commerce data, genomics data, and more. This data availability has resulted in a wide variety of data-driven solutions for infectious disease spread prediction which show potential in enhancing our forecasting capabilities. This book chapter (1) motivates the need for AI-based solutions in public health by showing the heterogeneity of human behavior related to health, (2) provides a brief survey of current state-of-the-art solutions using AI for infectious disease spread prediction, (3) describes a use-case of using large-scale human mobility data to inform AI models for the prediction of infectious disease spread in a city, and (4) provides future research directions and ideas. 
    more » « less
  4. Abstract Human mobility is a primary driver of infectious disease spread. However, existing data is limited in availability, coverage, granularity, and timeliness. Data-driven forecasts of disease dynamics are crucial for decision-making by health officials and private citizens alike. In this work, we focus on a machine-learned anonymized mobility map (hereon referred to as AMM) aggregated over hundreds of millions of smartphones and evaluate its utility in forecasting epidemics. We factor AMM into a metapopulation model to retrospectively forecast influenza in the USA and Australia. We show that the AMM model performs on-par with those based on commuter surveys, which are sparsely available and expensive. We also compare it with gravity and radiation based models of mobility, and find that the radiation model’s performance is quite similar to AMM and commuter flows. Additionally, we demonstrate our model’s ability to predict disease spread even across state boundaries. Our work contributes towards developing timely infectious disease forecasting at a global scale using human mobility datasets expanding their applications in the area of infectious disease epidemiology. 
    more » « less
  5. Fu, Feng (Ed.)
    Network science has increasingly become central to the field of epidemiology and our ability to respond to infectious disease threats. However, many networks derived from modern datasets are not just large, but dense, with a high ratio of edges to nodes. This includes human mobility networks where most locations have a large number of links to many other locations. Simulating large-scale epidemics requires substantial computational resources and in many cases is practically infeasible. One way to reduce the computational cost of simulating epidemics on these networks is sparsification , where a representative subset of edges is selected based on some measure of their importance. We test several sparsification strategies, ranging from naive thresholding to random sampling of edges, on mobility data from the U.S. Following recent work in computer science, we find that the most accurate approach uses the effective resistances of edges, which prioritizes edges that are the only efficient way to travel between their endpoints. The resulting sparse network preserves many aspects of the behavior of an SIR model, including both global quantities, like the epidemic size, and local details of stochastic events, including the probability each node becomes infected and its distribution of arrival times. This holds even when the sparse network preserves fewer than 10% of the edges of the original network. In addition to its practical utility, this method helps illuminate which links of a weighted, undirected network are most important to disease spread. 
    more » « less