skip to main content

Title: Optimal pose and shape estimation for category-level 3D object perception
We consider a category-level perception problem, where one is given 3D sensor data picturing an object of a given category (e.g., a car), and has to reconstruct the pose and shape of the object despite intra-class variability (i.e., different car models have different shapes). We consider an active shape model, where —for an object category— we are given a library of potential CAD models describing objects in that category, and we adopt a standard formulation where pose and shape estimation are formulated as a non-convex optimization. Our first contribution is to provide the first certifiably optimal solver for pose and shape estimation. In particular, we show that rotation estimation can be decoupled from the estimation of the object translation and shape, and we demonstrate that (i) the optimal object rotation can be computed via a tight (small-size) semidefinite relaxation, and (ii) the translation and shape parameters can be computed in closed-form given the rotation. Our second contribution is to add an outlier rejection layer to our solver, hence making it robust to a large number of misdetections. Towards this goal, we wrap our optimal solver in a robust estimation scheme based on graduated non-convexity. To further enhance robustness to outliers, we more » also develop the first graph-theoretic formulation to prune outliers in category-level perception, which removes outliers via convex hull and maximum clique computations; the resulting approach is robust to 70 − 90% outliers. Our third contribution is an extensive experimental evaluation. Besides providing an ablation study on a simulated dataset and on the PASCAL3D+ dataset, we combine our solver with a deep-learned keypoint detector, and show that the resulting approach improves over the state of the art in vehicle pose estimation in the ApolloScape datasets. « less
Authors:
Award ID(s):
2044973
Publication Date:
NSF-PAR ID:
10317130
Journal Name:
Robotics science and systems
ISSN:
2330-765X
Sponsoring Org:
National Science Foundation
More Like this
  1. Optimal transport (OT) measures distances between distributions in a way that depends on the geometry of the sample space. In light of recent advances in computational OT, OT distances are widely used as loss functions in machine learning. Despite their prevalence and advantages, OT loss functions can be extremely sensitive to outliers. In fact, a single adversarially-picked outlier can increase the standard W2-distance arbitrarily. To address this issue, we propose an outlier-robust formulation of OT. Our formulation is convex but challenging to scale at a first glance. Our main contribution is deriving an \emph{equivalent} formulation based on cost truncation that is easy to incorporate into modern algorithms for computational OT. We demonstrate the benefits of our formulation in mean estimation problems under the Huber contamination model in simulations and outlier detection tasks on real data.
  2. In this work, we tackle the problem of category-level online pose tracking of objects from point cloud sequences. For the first time, we propose a unified framework that can handle 9DoF pose tracking for novel rigid object instances as well as per-part pose tracking for articulated objects from known categories. Here the 9DoF pose, comprising 6D pose and 3D size, is equivalent to a 3D amodal bounding box representation with free 6D pose. Given the depth point cloud at the current frame and the estimated pose from the last frame, our novel end-to-end pipeline learns to accurately update the pose. Our pipeline is composed of three modules: 1) a pose canonicalization module that normalizes the pose of the input depth point cloud; 2) RotationNet, a module that directly regresses small interframe delta rotations; and 3) CoordinateNet, a module that predicts the normalized coordinates and segmentation, enabling analytical computation of the 3D size and translation. Leveraging the small pose regime in the pose-canonicalized point clouds, our method integrates the best of both worlds by combining dense coordinate prediction and direct rotation regression, thus yielding an end-to-end differentiable pipeline optimized for 9DoF pose accuracy (without using non-differentiable RANSAC). Our extensive experiments demonstratemore »that our method achieves new state-of-the-art performance on category-level rigid object pose (NOCSREAL275 [29]) and articulated object pose benchmarks (SAPIEN [34], BMVC [18]) at the fastest FPS ∼ 12.« less
  3. This work proposes a robotic pipeline for picking and constrained placement of objects without geometric shape priors. Compared to recent efforts developed for similar tasks, where every object was assumed to be novel, the proposed system recognizes previously manipulated objects and performs online model reconstruction and reuse. Over a lifelong manipulation process, the system keeps learning features of objects it has interacted with and updates their reconstructed models. Whenever an instance of a previously manipulated object reappears, the system aims to first recognize it and then register its previously reconstructed model given the current observation. This step greatly reduces object shape uncertainty allowing the system to even reason for parts of objects, which are currently not observable. This also results in better manipulation efficiency as it reduces the need for active perception of the target object during manipulation. To get a reusable reconstructed model, the proposed pipeline adopts: i) TSDF for object representation, and ii) a variant of the standard particle filter algorithm for pose estimation and tracking of the partial object model. Furthermore, an effective way to construct and maintain a dataset of manipulated objects is presented. A sequence of real-world manipulation experiments is performed. They show how futuremore »manipulation tasks become more effective and efficient by reusing reconstructed models of previously manipulated objects, which were generated during their prior manipulation, instead of treating objects as novel every time.« less
  4. Given a set of 3D to 2D putative matches, labeling the correspondences as inliers or outliers plays a critical role in a wide range of computer vision applications including the Perspective-n-Point (PnP) and object recognition. In this paper, we study a more generalized problem which allows the matches to belong to multiple objects with distinct poses. We propose a deep architecture to simultaneously label the correspondences as inliers or outliers and classify the inliers into multiple objects. Specifically, we discretize the 3D rotation space into twenty convex cones based on the facets of a regular icosahedron. For each facet, a facet classifier is trained to predict the probability of a correspondence being an inlier for a pose whose rotation normal vector points towards this facet. An efficient RANSAC-based post-processing algorithm is also proposed to further process the prediction results and detect the objects. Experiments demonstrate that our method is very efficient compared to existing methods and is capable of simultaneously labeling and classifying the inliers of multiple objects with high precision.
  5. Abstract

    Our behavioral goals shape how we process information via attentional filters that prioritize goal-relevant information, dictating both where we attend and what we attend to. When something unexpected or salient appears in the environment, it captures our spatial attention. Extensive research has focused on the spatiotemporal aspects of attentional capture, but what happens to concurrent nonspatial filters during visual distraction? Here, we demonstrate a novel, broader consequence of distraction: widespread disruption to filters that regulate category-specific object processing. We recorded fMRI while participants viewed arrays of face/house hybrid images. On distractor-absent trials, we found robust evidence for the standard signature of category-tuned attentional filtering: greater BOLD activation in fusiform face area during attend-faces blocks and in parahippocampal place area during attend-houses blocks. However, on trials where a salient distractor (white rectangle) flashed abruptly around a nontarget location, not only was spatial attention captured, but the concurrent category-tuned attentional filter was disrupted, revealing a boost in activation for the to-be-ignored category. This disruption was robust, resulting in errant processing—and early on, prioritization—of goal-inconsistent information. These findings provide a direct test of the filter disruption theory: that in addition to disrupting spatial attention, distraction also disrupts nonspatial attentional filters tuned tomore »goal-relevant information. Moreover, these results reveal that, under certain circumstances, the filter disruption may be so profound as to induce a full reversal of the attentional control settings, which carries novel implications for both theory and real-world perception.

    « less