skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Electromagnetic shower reconstruction and energy validation with Michel electrons and π 0 samples for the deep-learning-based analyses in MicroBooNE
Abstract This article presents the reconstruction of the electromagnetic activity from electrons and photons (showers) used in the MicroBooNE deep learning-based low energy electron search. The reconstruction algorithm uses a combination of traditional and deep learning-based techniques to estimate shower energies. We validate these predictions using two ν μ -sourced data samples: charged/neutral current interactions with final state neutral pions and charged current interactions in which the muon stops and decays within the detector producing a Michel electron. Both the neutral pion sample and Michel electron sample demonstrate agreement between data and simulation. Further, the absolute shower energy scale is shown to be consistent with the relevant physical constant of each sample: the neutral pion mass peak and the Michel energy cutoff.  more » « less
Award ID(s):
1801996 1913983 2047665
PAR ID:
10317515
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Journal of Instrumentation
Volume:
16
Issue:
12
ISSN:
1748-0221
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Wire-Cell is a 3D event reconstruction package for liquid argon time projection chambers. Through geometry, time, and drifted charge from multiple readout wire planes, 3D space points with associated charge are reconstructed prior to the pattern recognition stage. Pattern recognition techniques, including track trajectory and d Q /d x (ionization charge per unit length) fitting, 3D neutrino vertex fitting, track and shower separation, particle-level clustering, and particle identification are then applied on these 3D space points as well as the original 2D projection measurements. A deep neural network is developed to enhance the reconstruction of the neutrino interaction vertex. Compared to traditional algorithms, the deep neural network boosts the vertex efficiency by a relative 30% for charged-current ν e interactions. This pattern recognition achieves 80–90% reconstruction efficiencies for primary leptons, after a 65.8% (72.9%) vertex efficiency for charged-current ν e (ν μ ) interactions. Based on the resulting reconstructed particles and their kinematics, we also achieve 15-20% energy reconstruction resolutions for charged-current neutrino interactions. 
    more » « less
  2. We present a measurement of neutral pion production in charged-current interactions using data recorded with the MicroBooNE detector exposed to Fermilab’s booster neutrino beam. The signal comprises one muon, one neutral pion, any number of nucleons, and no charged pions. Studying neutral pion production in the MicroBooNE detector provides an opportunity to better understand neutrino-argon interactions, and is crucial for future accelerator-based neutrino oscillation experiments. Using a dataset corresponding to 6.86 × 10 20 protons on target, we present single-differential cross sections in muon and neutral pion momenta, scattering angles with respect to the beam for the outgoing muon and neutral pion, as well as the opening angle between the muon and neutral pion. Data extracted cross sections are compared to generator predictions. We report good agreement between the data and the models for scattering angles, except for an over-prediction by generators at muon forward angles. Similarly, the agreement between data and the models as a function of momentum is good, except for an underprediction by generators in the medium momentum ranges, 200–400 MeV for muons and 100–200 MeV for pions. Published by the American Physical Society2024 
    more » « less
  3. We present a deep learning-based method for estimating the neutrino energy of charged-current neutrino-argon interactions. We employ a recurrent neural network (RNN) architecture for neutrino energy estimation in the MicroBooNE experiment, utilizing liquid argon time projection chamber (LArTPC) detector technology. Traditional energy estimation approaches in LArTPCs, which largely rely on reconstructing and summing visible energies, often experience sizable biases and resolution smearing because of the complex nature of neutrino interactions and the detector response. The estimation of neutrino energy can be improved after considering the kinematics information of reconstructed final-state particles. Utilizing kinematic information of reconstructed particles, the deep learning-based approach shows improved resolution and reduced bias for the muon neutrino Monte Carlo simulation sample compared to the traditional approach. In order to address the common concern about the effectiveness of this method on experimental data, the RNN-based energy estimator is further examined and validated with dedicated data-simulation consistency tests using MicroBooNE data. We also assess its potential impact on a neutrino oscillation study after accounting for all statistical and systematic uncertainties and show that it enhances physics sensitivity. This method has good potential to improve the performance of other physics analyses. Published by the American Physical Society2024 
    more » « less
  4. Abstract We study the use of deep learning techniques to reconstruct the kinematics of the neutral current deep inelastic scattering (DIS) process in electron–proton collisions. In particular, we use simulated data from the ZEUS experiment at the HERA accelerator facility, and train deep neural networks to reconstruct the kinematic variables$$Q^2$$ Q 2 andx. Our approach is based on the information used in the classical construction methods, the measurements of the scattered lepton, and the hadronic final state in the detector, but is enhanced through correlations and patterns revealed with the simulated data sets. We show that, with the appropriate selection of a training set, the neural networks sufficiently surpass all classical reconstruction methods on most of the kinematic range considered. Rapid access to large samples of simulated data and the ability of neural networks to effectively extract information from large data sets, both suggest that deep learning techniques to reconstruct DIS kinematics can serve as a rigorous method to combine and outperform the classical reconstruction methods. 
    more » « less
  5. A bstract Hadronic τ decays are studied as probe of new physics. We determine the dependence of several inclusive and exclusive τ observables on the Wilson coefficients of the low-energy effective theory describing charged-current interactions between light quarks and leptons. The analysis includes both strange and non-strange decay channels. The main result is the likelihood function for the Wilson coefficients in the tau sector, based on the up-to-date experimental measurements and state-of-the-art theoretical techniques. The likelihood can be readily combined with inputs from other low-energy precision observables. We discuss a combination with nuclear beta, baryon, pion, and kaon decay data. In particular, we provide a comprehensive and model-independent description of the new physics hints in the combined dataset, which are known under the name of the Cabibbo anomaly. 
    more » « less