TRENCH VERSUS FOREARC: LATE CRETACEOUS TRENCH SEDIMENT ACCUMULATION AND FOREARC EROSION ALONG THE SOUTHERN MARGIN OF TIBET AS REVEALED BY PROVENANCE ANALYSIS
- Award ID(s):
- 1942460
- PAR ID:
- 10317689
- Date Published:
- Journal Name:
- Geological Society of America Abstracts with Programs
- ISSN:
- 0016-7592
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Although subduction zones are characterized by convergence, the upper plates of subduction zones exhibit a diverse range of deformation styles that are often inconsistent with regional convergence. While several theories have been proposed to explain these variations, the underlying factors driving these differences are still not fully understood. In this study, we analyze 24,000 km of active global subduction zones around the globe to determine how subduction zone obliquity affects deformation in the trench‐parallel and horizontal directions on land above subduction zones. We take advantage of recently published worldwide data sets of Global Navigation Satellite System (GNSS) velocities and global active fault catalogs in order to examine deformation at 13 of the world's forearcs. We analyze deformation over both short (decadal) timescales, captured by GNSS, and long (millennial to million‐year) timescales, observed through trench‐parallel active forearc faults. The results reveal a strong link between subduction obliquity and both the sense and amount of forearc rotation detected by GNSS, as well as the sense and rate of deformation along trench‐parallel strike‐slip faults. Unlike previous studies indicating that subduction obliquity affects forearc deformation only beyond a certain threshold, we demonstrate that even low to moderate obliquity significantly influences the observed deformation.more » « less
-
Short historical and even shorter instrumental records limit our perspective of earthquake maximum magnitude and recurrence and thus are inadequate to fully characterize Earth’s complex and multiscale seismic behavior and its consequences. Motivated by the mission to fill the gap in long-term paleoseismic records of giant (Mw 9 class) subduction zone earthquakes, such as the Tohoku-Oki earthquake in 2011, International Ocean Discovery Program Expedition 386 successfully collected 29 giant piston cores at 15 sites (total core recovery = 831.19 m), recovering up to 37.82 m long, continuous upper Pleistocene to Holocene stratigraphic successions of 11 individual trench-fill basins that are expected to have recorded past earthquakes. Preliminary expedition results document event-stratigraphic successions comprising numerous event deposits and initially characterize their different types, facies, properties, composition, and frequency of occurrence, which show spatial variations across the entire Japan Trench. The occurrence of several tephra beds, radiolarian biostratigraphic events, and characteristic variations of paleomagnetic declination and inclination that probably represent paleomagnetic secular variation reveal high potential for establishing robust age models in all parts of the Japan Trench. The central Japan Trench models are most likely to cover the longest timescales, with expected age ranges reaching back to ~24 ka. Together, these preliminary initial results indicate that the applied concept and strategy of multisite coring will likely be successful to test and further develop sub-marine paleoseismology to extract megathrust earthquake signals from event-stratigraphic sequences preserved in the sedimentary record. Obtained data and samples will now be examined using postexpedition multimethod applications to comprehensively characterize and date event deposits. Detailed work will include detailed characterization of the sedimentologic, physical, and (bio-)geochemical features; stratigraphic expressions of relationships; and spatiotemporal distribution of event beds. These will be analyzed as foundational proxy evidence for distinguishing giant earthquakes from smaller earthquakes and aseismic processes driving mechanisms to ultimately develop a long-term record of giant earthquakes. Furthermore, Expedition 386 achievements comprise the first ever high temporal and high spatial resolution subsurface investigation and sampling in a hadal oceanic trench, which are the deepest and least explored environments on our planet. Preliminary initial results show high total organic carbon content and downcore pore water and headspace gas profiles with characteristic changes related to organic matter degradation. In combination, these are suggestive of the occurrence of intensive remineralization and reveal evidence of nonsteady-state behavior. Together with the successful offshore sampling for microbiology postexpedition analyses and research, this provides exciting new perspectives to advance our understanding of deep-sea elemental cycles and their influence on hadal environments.more » « less
-
Interactions between deep Earth geodynamics and Earth surface processes are well documented at various scales, but many challenges remain in how inversion of a fluvially incised landscape should be interpreted in terms of long-term geodynamics or how deep Earth dynamics impact natural hazards. Here, we present results from geomorphic stream channel metrics and modeling of long profiles of streams draining the Tyrrhenian (northern) flank of Sicily (Italy), to assess the inferred, rapid, west-to-east horizontal translation of the Calabrian forearc. A detachment-limited stream power model-based determination of landscape response time and knickpoint migration provides an independent prediction for transient base level fall associated with the sweeping forearc over the past ~4 Ma. The model shows that two pulses of time-transgressive, west-to-east propagating base level fall occurred in the drainages of northern Sicily, where parallel north-flowing streams are arranged across the migrating path of the forearc. The long profile analysis indicates that the paired uplift pulses last ~1 Ma and are separated in time by ~1.5 Ma, consistent with the west-to-east passage first of the forearc high, followed by dynamic uplift in its wake due to sub-lithospheric mantle flow, as proposed in other plate boundary settings. The ongoing surficial response to these dynamics is represented by river incision, knickpoint migration, and drainage divide migration. Furthermore, these processes steepened the landscape, leading to an increase in active landsliding and contributing to the natural hazards in this region.more » « less
An official website of the United States government

