Abstract Let be a submonoid of a free Abelian group of finite rank. We show that if is a field of prime characteristic such that the monoid ‐algebra is , then is a finitely generated ‐algebra, or equivalently, that is a finitely generated monoid. Split‐‐regular rings are possibly non‐Noetherian or non‐‐finite rings that satisfy the defining property of strongly ‐regular rings from the theories of tight closure and ‐singularities. Our finite generation result provides evidence in favor of the conjecture that rings in function fields over have to be Noetherian. The key tool is Diophantine approximation from convex geometry.
more »
« less
The automorphism group of a shift of slow growth is amenable
Suppose $$(X,\unicode[STIX]{x1D70E})$$ is a subshift, $$P_{X}(n)$$ is the word complexity function of $$X$$ , and $$\text{Aut}(X)$$ is the group of automorphisms of $$X$$ . We show that if $$P_{X}(n)=o(n^{2}/\log ^{2}n)$$ , then $$\text{Aut}(X)$$ is amenable (as a countable, discrete group). We further show that if $$P_{X}(n)=o(n^{2})$$ , then $$\text{Aut}(X)$$ can never contain a non-abelian free monoid (and, in particular, can never contain a non-abelian free subgroup). This is in contrast to recent examples, due to Salo and Schraudner, of subshifts with quadratic complexity that do contain such a monoid.
more »
« less
- Award ID(s):
- 1500670
- PAR ID:
- 10317801
- Date Published:
- Journal Name:
- Ergodic Theory and Dynamical Systems
- Volume:
- 40
- Issue:
- 7
- ISSN:
- 0143-3857
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
On the Classification of Normal Stein Spaces and Finite Ball Quotients With Bergman–Einstein Metricsnull (Ed.)Abstract We study the Bergman metric of a finite ball quotient $$\mathbb{B}^n/\Gamma $$, where $$n \geq 2$$ and $$\Gamma \subseteq{\operatorname{Aut}}({\mathbb{B}}^n)$$ is a finite, fixed point free, abelian group. We prove that this metric is Kähler–Einstein if and only if $$\Gamma $$ is trivial, that is, when the ball quotient $$\mathbb{B}^n/\Gamma $$ is the unit ball $${\mathbb{B}}^n$$ itself. As a consequence, we characterize the unit ball among normal Stein spaces with isolated singularities and abelian fundamental groups in terms of the existence of a Bergman–Einstein metric.more » « less
-
Abstract LetMbe a cancellative and commutative (additive) monoid. The monoidMis atomic if every non-invertible element can be written as a sum of irreducible elements, which are also called atoms. Also,Msatisfies the ascending chain condition on principal ideals (ACCP) if every increasing sequence of principal ideals (under inclusion) becomes constant from one point on. In the first part of this paper, we characterize torsion-free monoids that satisfy the ACCP as those torsion-free monoids whose submonoids are all atomic. A submonoid of the nonnegative cone of a totally ordered abelian group is often called a positive monoid. Every positive monoid is clearly torsion-free. In the second part of this paper, we study the atomic structure of certain classes of positive monoids.more » « less
-
Abstract We prove that ifAis a non-separable abelian tracial von Neuman algebra then its free powersA∗n,2≤n≤∞, are mutually non-isomorphic and with trivial fundamental group,$$\mathcal{F}(A^{*n})=1$$, whenever 2≤n<∞. This settles the non-separable version of the free group factor problem.more » « less
-
Mikołaj Bojańczyk and Emanuela Merelli and David P. Woodruff (Ed.)The classical coding theorem in Kolmogorov complexity states that if an n-bit string x is sampled with probability δ by an algorithm with prefix-free domain then K(x) ≤ log(1/δ) + O(1). In a recent work, Lu and Oliveira [31] established an unconditional time-bounded version of this result, by showing that if x can be efficiently sampled with probability δ then rKt(x) = O(log(1/δ)) + O(log n), where rKt denotes the randomized analogue of Levin’s Kt complexity. Unfortunately, this result is often insufficient when transferring applications of the classical coding theorem to the time-bounded setting, as it achieves a O(log(1/δ)) bound instead of the information-theoretic optimal log(1/δ). Motivated by this discrepancy, we investigate optimal coding theorems in the time-bounded setting. Our main contributions can be summarised as follows. • Efficient coding theorem for rKt with a factor of 2. Addressing a question from [31], we show that if x can be efficiently sampled with probability at least δ then rKt(x) ≤ (2 + o(1)) · log(1/δ) +O(log n). As in previous work, our coding theorem is efficient in the sense that it provides a polynomial-time probabilistic algorithm that, when given x, the code of the sampler, and δ, it outputs, with probability ≥ 0.99, a probabilistic representation of x that certifies this rKt complexity bound. • Optimality under a cryptographic assumption. Under a hypothesis about the security of cryptographic pseudorandom generators, we show that no efficient coding theorem can achieve a bound of the form rKt(x) ≤ (2 − o(1)) · log(1/δ) + poly(log n). Under a weaker assumption, we exhibit a gap between efficient coding theorems and existential coding theorems with near-optimal parameters. • Optimal coding theorem for pKt and unconditional Antunes-Fortnow. We consider pKt complexity [17], a variant of rKt where the randomness is public and the time bound is fixed. We observe the existence of an optimal coding theorem for pKt, and employ this result to establish an unconditional version of a theorem of Antunes and Fortnow [5] which characterizes the worst-case running times of languages that are in average polynomial-time over all P-samplable distributions.more » « less
An official website of the United States government

