skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A statistical framework for integrating nonparametric proxy distributions into geological reconstructions of relative sea level
Abstract. Robust, proxy-based reconstructions of relative sea-level (RSL) change are critical to distinguishing the processes that drive spatial and temporal sea-level variability. The relationships between individual proxies and RSL can be complex and are often poorly represented by traditional methods that assume Gaussian likelihood distributions. We develop a new statistical framework to estimate past RSL change based on nonparametric, empirical modern distributions of proxies in relation to RSL, applying the framework to corals and mangroves as an illustrative example. We validate our model by comparing its skill in reconstructing RSL and rates of change to two previous RSL models using synthetic time-series datasets based on Holocene sea-level data from South Florida. The new framework results in lower bias, better model fit, and greater accuracy and precision than the two previous RSL models. We also perform sensitivity tests using sea-level scenarios based on two periods of interest – meltwater pulses (MWPs) and the Holocene – to analyze the sensitivity of the statistical reconstructions to the quantity and precision of proxy data; we define high-precision indicators, such as mangroves and the reef-crest coral Acropora palmata, with 2σ vertical uncertainties within ± 3 m and lower-precision indicators, such as Orbicella spp., with 2σ vertical uncertainties within ± 10 m. For reconstructing rapid rates of change in RSL of up to ∼ 40 m kyr−1, such as those that may have characterized MWPs during deglacial periods, we find that employing the nonparametric model with 5 to 10 high-precision data points per kiloyear enables us to constrain rates to within ± 3 m kyr−1 (1σ). For reconstructing RSL with rates of up to ∼ 15 m kyr−1, as observed during the Holocene, we conclude that employing the model with 5 to 10 high-precision (or a combination of high- and low-precision) data points per kiloyear enables precise estimates of RSL within ±∼ 2 m (2σ) and accurate RSL reconstructions with errors ≲ 0.7 m. Employing the nonparametric model with only lower-precision indicators also produces fairly accurate estimates of RSL with errors ≲1.50 m, although with less precision, only constraining RSL to ±∼ 3–4 m (2σ). Although the model performs better than previous models in terms of bias, model fit, accuracy, and precision, it is computationally expensive to run because it requires inverting large matrices for every sample. The new model also provides minimal gains over similar models when a large quantity of high-precision data are available. Therefore, we recommend incorporating the nonparametric likelihood distributions when no other information (e.g., reef facies or epibionts indicative of shallow-water environments to refine coral elevational uncertainties) or no high-precision data are available at a location or during a given time period of interest.  more » « less
Award ID(s):
2002437 2041325 1702740 1831450
PAR ID:
10317804
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Advances in Statistical Climatology, Meteorology and Oceanography
Volume:
8
Issue:
1
ISSN:
2364-3587
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY Fossil corals are commonly used to reconstruct Last Interglacial (∼125 ka, LIG) sea level. Sea level reconstructions assume the water depth at which the coral lived, called the ‘relative water depth’. However, relative water depth varies in time and space due to coral reef growth in response to relative sea level (RSL) changes. RSL changes can also erode coral reefs, exposing older reef surfaces with different relative water depths. We use a simplified numerical model of coral evolution to investigate how sea level history systematically influences the preservation of corals in the Bahamas and western Australia, regions which house >100 LIG coral fossils. We construct global ice histories spanning the uncertainty of LIG global mean sea level (GMSL) and predict RSL with a glacial isostatic adjustment model. We then simulate coral evolution since 132 ka. We show that preserved elevations and relative water depths of modelled LIG corals are sensitive to the magnitude, timing and number of GMSL highstand(s). In our simulations, the influence of coral growth and erosion (i.e. the ‘growth effect’) can have an impact on RSL reconstructions that is comparable to glacial isostatic adjustment. Thus, without explicitly accounting for the growth effect, additional uncertainty is introduced into sea level reconstructions. Our results suggest the growth effect is most pronounced in western Australia due to Holocene erosion, but also plays a role in the Bahamas, where LIG RSL rose rapidly due to the collapsing peripheral bulge associated with Laurentide Ice Sheet retreat. Despite the coral model's simplicity, our study highlights the utility of process-based RSL reconstructions. 
    more » « less
  2. Abstract Recent ice-mass loss driven by warming along the Antarctic Peninsula has resulted in rapid changes in uplift rates across the region. Are such events only a function of recent warming? If not, does the Earth response to such events last long enough to be preserved in Holocene records of relative sea level (RSL), and thus have a bearing on global-scale glacial isostatic adjustment (GIA) models (e.g. ICE-6G)? Answering such questions in Antarctica is hindered by the scarcity of RSL reconstructions within the region. Here, a new RSL reconstruction for Antarctica is presented based on beach ridges from Joinville Island on the Antarctic Peninsula. We find that RSL has fallen 4.9 ± 0.58 m over the past 3100 yr, and that the island experienced a significant increase in the rate of RSL fall from 1540 ± 125 cal. (calibrated) yr B.P. to 1320 ± 125 cal. yr B.P. This increase in the rate of RSL fall is likely due to the viscoelastic response of the solid Earth to terrestrial ice-mass loss from the Antarctic Peninsula, similar to the Earth response experienced after ice-mass loss following acceleration of glaciers behind the collapsed Larsen B ice shelf in 2002 C.E. Additionally, slower rates of beach-ridge progradation from 695 ± 190 cal. yr B.P. to 235 ± 175 cal. yr B.P. potentially reflect erosion of beach ridges from a RSL rise induced by a local glacial advance. The rapid response of the Earth to minor ice-mass changes recorded in the RSL record further supports recent assertions of a more responsive Earth to glacial unloading and at time scales relevant for GIA of Holocene and Pleistocene sea levels. Thus, current continental and global GIA models may not accurately capture the ice-mass changes of the Antarctic ice sheets at decadal and centennial time scales. 
    more » « less
  3. null (Ed.)
    ABSTRACT Salt-marsh foraminifera are sea-level proxies used to quantitatively reconstruct Holocene paleo-marsh elevations (PME) and subsequently relative sea level (RSL). The reliability of these reconstructions is partly dependent upon counting enough foraminifera to accurately characterize assemblages, while counting fewer tests allows more samples to be processed. We test the influence of count size on PME reconstructions by repeatedly subsampling foraminiferal assemblages preserved in a core of salt-marsh peat (from Newfoundland, Canada) with unusually large counts (up to 1595). Application of a single, weighted-averaging transfer function developed from a regional-scale modern training set to these ecologically-plausible simulated assemblages generated PME reconstructions at count sizes of 10–700. Reconstructed PMEs stabilize at counts sizes greater than ∼50 and counts exceeding ∼250 tests show little return for the additional time invested. The absence of some rare taxa in low counts is unlikely to markedly influence results from weighted-averaging transfer functions. Subsampling of modern foraminifera indicates that cross-validated transfer function performance shows only modest improvement when more than ∼40 foraminifera are counted. Studies seeking to understand multi-meter and millennial scale RSL trends should count more than ∼50 tests. The precision sought by studies aiming to resolve decimeter- and decadal-scale RSL variability is best achieved with counts greater than ∼75. In most studies seeking to reconstruct PME, effort is more productively allocated by counting relatively fewer foraminifera in more core samples than in counting large numbers of individuals. Target count sizes of 100–300 in existing studies are likely conservative and robust. Given the low diversity of salt-marsh foraminiferal assemblages, our results are likely applicable throughout and beyond northeastern North America. 
    more » « less
  4. Abstract The rapidly retreating Thwaites and Pine Island glaciers together dominate present-day ice loss from the West Antarctic Ice Sheet and are implicated in runaway deglaciation scenarios. Knowledge of whether these glaciers were substantially smaller in the mid-Holocene and subsequently recovered to their present extents is important for assessing whether current ice recession is irreversible. Here we reconstruct relative sea-level change from radiocarbon-dated raised beaches at sites immediately seawards of these glaciers, allowing us to examine the response of the earth to loading and unloading of ice in the Amundsen Sea region. We find that relative sea level fell steadily over the past 5.5 kyr without rate changes that would characterize large-scale ice re-expansion. Moreover, current bedrock uplift rates are an order of magnitude greater than the rate of long-term relative sea-level fall, suggesting a change in regional crustal unloading and implying that the present deglaciation may be unprecedented in the past ~5.5 kyr. While we cannot preclude minor grounding-line fluctuations, our data are explained most easily by early Holocene deglaciation followed by relatively stable ice positions until recent times and imply that Thwaites and Pine Island glaciers have not been substantially smaller than present during the past 5.5 kyr. 
    more » « less
  5. Abstract Global mean sea-level (GMSL) change can shed light on how the Earth system responds to warming. Glaciological evidence indicates that Earth’s ice sheets retreated inland of early industrial (1850 CE) extents during the Holocene (11.7-0 ka), yet previous work suggests that Holocene GMSL never surpassed early industrial levels. We merge sea-level data with a glacial isostatic adjustment model ensemble and reconstructions of postglacial thermosteric sea-level and mountain glacier evolution to estimate Holocene GMSL and ice volume. We show it is likely (probabilityP= 0.75) GMSL exceeded early industrial levels after 7.5ka, reaching 0.24 m (−3.3 to 1.0 m, 90% credible interval) above present by 3.2ka; Antarctica was likely (P = 0.78) smaller than present after 7ka; GMSL rise by 2150 will very likely (P = 0.9) be the fastest in the last 5000 years; and by 2060, GMSL will as likely than not (P = 0.5) be the highest in 115,000 years. 
    more » « less