Abstract We define a local homomorphism$$(Q,k)\to (R,\ell )$$to be Koszul if its derived fiber$$R\otimes ^{\mathsf {L}}_Q k$$is formal, and if$$\operatorname {Tor}^{Q}(R,k)$$is Koszul in the classical sense. This recovers the classical definition whenQis a field, and more generally includes all flat deformations of Koszul algebras. The non-flat case is significantly more interesting, and there is no need for examples to be quadratic: all complete intersection and all Golod quotients are Koszul homomorphisms. We show that the class of Koszul homomorphisms enjoys excellent homological properties, and we give many more examples, especially various monomial and Gorenstein examples. We then study Koszul homomorphisms from the perspective of$$\mathrm {A}_{\infty }$$-structures on resolutions. We use this machinery to construct universal free resolutions ofR-modules by generalizing a classical construction of Priddy. The resulting (infinite) free resolution of anR-moduleMis often minimal and can be described by a finite amount of data wheneverMandRhave finite projective dimension overQ. Our construction simultaneously recovers the resolutions of Shamash and Eisenbud over a complete intersection ring, and the bar resolutions of Iyengar and Burke over a Golod ring, and produces analogous resolutions for various other classes of local rings.
more »
« less
Quadratic Gorenstein Rings and the Koszul Property II
Abstract Conca–Rossi–Valla [6] ask if every quadratic Gorenstein ring $$R$$ of regularity three is Koszul. In [15], we use idealization to answer their question, proving that in nine or more variables there exist quadratic Gorenstein rings of regularity three, which are not Koszul. In this paper, we study the analog of the Conca–Rossi–Valla question when the regularity of $$R$$ is four or more. Let $$R$$ be a quadratic Gorenstein ring having $${\operatorname {codim}} \ R = c$$ and $${\operatorname {reg}} \ R = r \ge 4$$. We prove that if $c = r+1$ then $$R$$ is always Koszul, and for every $$c \geq r+2$$, we construct quadratic Gorenstein rings that are not Koszul, answering questions of Matsuda [16] and Migliore–Nagel [19].
more »
« less
- Award ID(s):
- 2048906
- PAR ID:
- 10318135
- Date Published:
- Journal Name:
- International Mathematics Research Notices
- ISSN:
- 1073-7928
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract If $$R$$ is the ring of integers of a number field, then there exists a polynomial parametrization of the set $$\operatorname{SL}_2(R)$$, that is, an element $$A\in{\textrm{SL}}_2(\mathbb{Z}[x_1,\ldots ,x_n])$$ such that every element of $$\operatorname{SL}_2(R)$$ is obtained by specializing $$A$$ via some homomorphism $$\mathbb{Z}[x_1,\ldots ,x_n]\to R$$.more » « less
-
Abstract A local ring R is regular if and only if every finitely generated R -module has finite projective dimension. Moreover, the residue field k is a test module: R is regular if and only if k has finite projective dimension. This characterization can be extended to the bounded derived category $$\mathsf {D}^{\mathsf f}(R)$$ , which contains only small objects if and only if R is regular. Recent results of Pollitz, completing work initiated by Dwyer–Greenlees–Iyengar, yield an analogous characterization for complete intersections: R is a complete intersection if and only if every object in $$\mathsf {D}^{\mathsf f}(R)$$ is proxy small. In this paper, we study a return to the world of R -modules, and search for finitely generated R -modules that are not proxy small whenever R is not a complete intersection. We give an algorithm to construct such modules in certain settings, including over equipresented rings and Stanley–Reisner rings.more » « less
-
Abstract A simple polytopePis calledB-rigidif its combinatorial type is determined by the cohomology ring of the moment-angle manifold$$\mathcal {Z}_P$$overP. We show that any tensor product decomposition of this cohomology ring is geometrically realized by a product decomposition of the moment-angle manifold up to equivariant diffeomorphism. As an application, we find thatB-rigid polytopes are closed under products, generalizing some recent results in the toric topology literature. Algebraically, our proof establishes that the Koszul homology of a Gorenstein Stanley–Reisner ring admits a nontrivial tensor product decomposition if and only if the underlying simplicial complex decomposes as a join of full subcomplexes.more » « less
-
The connected sum construction, which takes as input Gorenstein rings and produces new Gorenstein rings, can be considered as an algebraic analogue for the topological construction having the same name. We determine the graded Betti numbers for connected sums of graded Artinian Gorenstein algebras. Along the way, we find the graded Betti numbers for fiber products of graded rings; an analogous result was obtained in the local case by Geller [Proc. Amer. Math. Soc. 150 (2022), pp. 4159–4172]. We relate the connected sum construction to the doubling construction, which also produces Gorenstein rings. Specifically, we show that, for any number of summands, a connected sum of doublings is the doubling of a fiber product ring.more » « less
An official website of the United States government

