skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Oxygen-bearing functionalities enhancing NO 2 , NH 3 , and acetone electronic response and response variation by polythiophenes in organic field-effect transistor sensors
We investigated the enhanced vapor responses and altered response ratios of a series of thiophene (co)polymers with oxygenated side chains (CH 2 OH, linear polyethylene glycol, and crown ether), including the novel poly(3-hydroxymethylthiophene) (PTOH) and other newly synthesized polymers. Hydroxymethyl-containing copolymers had higher mobility compared to poly(3-hexylthiophene) (P3HT). The larger crown ether moiety promotes transistor characteristics of P3HT while the smaller one impairs them. Incorporating different oxygen bearing functionalities increased responses of thiophene polymers to NO 2 , NH 3 , and acetone. For example a polyether side chain increases the NO 2 response sensitivity of copolymers of both P3HT and PTOH, but sensitivity towards gas analytes was more prominent for glycol-based functionalities rather than the crown ethers. PTOH is very sensitive to NO 2 and the response likely includes a contribution from conductive protons on the OH group. The lack of correlation among the rank-ordered gas sensitivities imparted by each functional group was found to be useful for designing a selective sensor array. We specifically showed high classification accuracy for all the polymer responses to NO 2 and acetone vapors, both of which gave increased device currents but with response ratios different enough to allow highly classifying discriminant functions to be derived.  more » « less
Award ID(s):
1807292 1807293
PAR ID:
10318460
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry C
Volume:
10
Issue:
6
ISSN:
2050-7526
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Recent work has identified surface energy as a key figure of merit in predicting the morphology of bulk heterojunction organic solar cells and organic alloy formation in ternary blend organic solar cells. An efficient way of tuning surface energy in conjugated polymers is by introducing functionalised side chains. Here, we present a systematic study on a family of poly(3-hexylthiophene) (P3HT)-based random copolymers bearing five different functionalised side chains (ester, ether, diether, carbamate, nitrile) prepared by direct arylation polymerization (DArP) in terms of their effectiveness in tuning surface energy. This study also exemplifies the superior functional group tolerance in DArP compared to more traditional polymerization procedures. Water droplet contact angle measurements revealed that especially carbamates are highly effective in tuning surface energy, increasing the surface energy from 21.2 mN m −1 with P3HT to 25.5 mN m −1 and 28.6 mN m −1 in 25% and 50% carbamate functionalized copolymers, respectively. Importantly, by introducing a two-carbon-spacer between the conjugated backbone and the functional group, optical and electronic properties of P3HT could be largely maintained in the copolymers as determined by UV/Vis, cyclic voltammetry and space charge limited current hole mobility. 
    more » « less
  2. A carboxylated thiophene polymer-based chemiresistive device in a field-effect transistor (FET) configuration with unusual and enhanced responses to the widespread pollutants nitrogen dioxide (NO 2 ) and ammonia (NH 3 ) is described. The device based on a polymeric thiophene carboxylic acid showed a dramatic and superlinear increase in drain current ( I D ) of over 15 000% to a ramped exposure to 10 ppm NO 2 over several minutes, while its ethyl ester counterpart had significantly lower response. Devices incorporating either an ester or carboxylic acid displayed comparable and previously unreported increases in I D from 10 ppm ramped NH 3 exposure of 200–300%. Conventional poly(alkylthiophenes) showed the expected current decreases from similar NH 3 exposures. Using threshold voltage shifts in silicon transistors coupled to our recently reported remote gate (RG) platform with thiophene polymer coatings, we determined that two differing response mechanisms are associated with the two gas exposures. By calculating the charge density induced in the polymers by NO 2 exposure using the silicon transistor voltage shifts, we conclude that proton conduction contributes significantly to the high sensitivity of the carboxylic acid to NO 2 , in addition to doping that was observed for all four polymers. Furthermore, hydrogen bonding moieties of the carboxylic acid and ester may be able to physisorb NH 3 and thus alter the charge distribution, rearrange polymer chains, and/or create a proton transfer network leading to the I D increase that is the opposite of the response obtained from non-carboxylated thiophene polymers. 
    more » « less
  3. Polythiophenes (PTs) constitute a diverse array of promising materials for conducting polymer applications. However, many of the synthetic methods to produce PTs have been optimized only for the prototypical alkyl-substituted example poly(3-hexylthiophene) (P3HT). Improvement of these methods beyond P3HT is key to enabling the widespread application of PTs. In this work, P3HT and two ether-substituted PTs poly(2-dodecyl-2H,3H-thieno[3,4-b][1,4]dioxine) (PEDOT-C12) and poly(3,4-bis(hexyloxy)thiophene) (PBHOT) are synthesized by the FeCl3-initiated oxidative method under different conditions. Polymerization was carried out according to a common literature procedure (“reverse addition”) and a modified method (“standard addition”), which differ by the solvent system and the order of addition of reagents to the reaction mixture. Gel-permeation chromatography (GPC) was performed to determine the impact of the different methods on the molecular weights (Mw) and degree of polymerization (Xw) of the polymers relative to polystyrene standards. The standard addition method produced ether-substituted PTs with higher Mw and Xw than those produced using the reverse addition method for sterically unhindered monomers. For P3HT, the highest Mw and Xw were obtained using the reverse addition method. The results show the oxidation potential of the monomer and solution has the greatest impact on the yield and Xw obtained and should be carefully considered when optimizing the reaction conditions for different monomers. 
    more » « less
  4. Abstract A systematic analysis is used to understand electrical drift occurring in field‐effect transistor (FET) dissolved‐analyte sensors by investigating its dependence on electrode surface‐solution combinations in a remote‐gate (RG) FET configuration. Water at pH 7 and neat acetonitrile, having different dipoles and polarizabilities, are applied to the RG surface of indium tin oxide, SiO2, hexamethyldisilazane‐modified SiO2, polystyrene, poly(styrene‐co‐acrylic acid), poly(3‐hexylthiophene‐2,5‐diyl) (P3HT), and poly [3‐(3‐carboxypropyl)thiophene‐2,5‐diyl] (PT‐COOH). It is discovered that in some cases a slow reorientation of dipoles at the interface induced by gate electric fields causes severe drift and hysteresis because of induced interface potential changes. Conductive and charged P3HT and PT‐COOH increase electrochemical stability by promoting fast surface equilibrations. It is also demonstrated that pH sensitivity of P3HT (17 mV per pH) is an indication of proton doping. PT‐COOH shows further enhanced pH sensitivity (30 mV per pH). This combination of electrochemical stability and pH response in PT‐COOH are proposed as advantageous for polymer‐based biosensors. 
    more » « less
  5. We report the first example of a self-immolative polymer that exerts potent antibacterial activity combined with relatively low hemolytic toxicity. In particular, self-immolative poly(benzyl ether)s bearing pendant cationic ammonium groups and grafted poly(ethylene glycol) chains in their side chains were prepared via post-polymerization thiol–ene chemistry. These functional polymers undergo sensitive and specific triggered depolymerization into small molecules upon exposure to a designed stimulus (in this example, fluoride ions cleave a silyl ether end cap). The molar composition of the resulting statistical copolymers varied from 0 to 100% PEG side chains. The average molar mass of the pendant PEG chains was either 800 or 2000 g mol −1 . The antibacterial and hemolytic activities were evaluated as a function of copolymer composition. Strong bactericidal activity (low μg mL −1 MBC) was retained in the copolymers containing 25–50% PEG-800, whereas hemolytic toxicity monotonically decreased (up to HC 50 >1000 μg mL −1 ) with increasing PEG content. PEG-2000 was far less effective; both the MBC and HC 50 decreased to a comparable extent with increasing PEGylation. Overall, the best cell type selectivity index (HC 50 /MBC ∼ 28) was obtained for the copolymer containing ∼50% cysteamine and ∼50% PEG-800 side chains, as compared to the cationic homopolymer (HC 50 /MBC < 1). Thus, the systematic tuning of the PEG graft density and chain length effectively enhances the cell-type selectivity of these self-immolative polymers by orders of magnitude. 
    more » « less