skip to main content

This content will become publicly available on September 27, 2022

Title: Robofleet: Open Source Communication and Management for Fleets of Autonomous Robots
Long-term deployment of a fleet of mobile robots requires reliable and secure two-way communication channels between individual robots and remote human operators for supervision and tasking. Existing open-source solutions to this problem degrade in performance in challenging real-world situations such as intermittent and low-bandwidth connectivity, do not provide security control options, and can be computationally expensive on hardware-constrained mobile robot platforms. In this paper, we present Robofleet, a lightweight open-source system which provides inter-robot communication, remote monitoring, and remote tasking for a heterogenous fleet of ROS-enabled service-mobile robots that is designed with the practical goals of resilience to network variance and security control in mind.Robofleet supports multi-user, multi-robot communication via a central server. This architecture deduplicates network traffic between robots, significantly reducing overall network load when compared with native ROS communication. This server also functions as a single entrypoint into the system, enabling security control and user authentication. Individual robots run the lightweight Robofleet client, which is responsible for exchanging messages with the Robofleet server. It automatically adapts to adverse network conditions through backpressure monitoring as well as topic-level priority control, ensuring that safety-critical messages are successfully transmitted. Finally, the system includes a web-based visualization tool that can be run more » on any internet-connected, browser-enabled device to monitor and control the fleet.We compare Robofleet to existing methods of robotic communication, and demonstrate that it provides superior resilience to network variance while maintaining performance that exceeds that of widely-used systems. « less
Authors:
; ; ;
Award ID(s):
2046955
Publication Date:
NSF-PAR ID:
10318550
Journal Name:
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Sponsoring Org:
National Science Foundation
More Like this
  1. Obeid, Iyad ; Selesnick, Ivan ; Picone, Joseph (Ed.)
    The goal of this work was to design a low-cost computing facility that can support the development of an open source digital pathology corpus containing 1M images [1]. A single image from a clinical-grade digital pathology scanner can range in size from hundreds of megabytes to five gigabytes. A 1M image database requires over a petabyte (PB) of disk space. To do meaningful work in this problem space requires a significant allocation of computing resources. The improvements and expansions to our HPC (highperformance computing) cluster, known as Neuronix [2], required to support working with digital pathology fall into two broadmore »categories: computation and storage. To handle the increased computational burden and increase job throughput, we are using Slurm [3] as our scheduler and resource manager. For storage, we have designed and implemented a multi-layer filesystem architecture to distribute a filesystem across multiple machines. These enhancements, which are entirely based on open source software, have extended the capabilities of our cluster and increased its cost-effectiveness. Slurm has numerous features that allow it to generalize to a number of different scenarios. Among the most notable is its support for GPU (graphics processing unit) scheduling. GPUs can offer a tremendous performance increase in machine learning applications [4] and Slurm’s built-in mechanisms for handling them was a key factor in making this choice. Slurm has a general resource (GRES) mechanism that can be used to configure and enable support for resources beyond the ones provided by the traditional HPC scheduler (e.g. memory, wall-clock time), and GPUs are among the GRES types that can be supported by Slurm [5]. In addition to being able to track resources, Slurm does strict enforcement of resource allocation. This becomes very important as the computational demands of the jobs increase, so that they have all the resources they need, and that they don’t take resources from other jobs. It is a common practice among GPU-enabled frameworks to query the CUDA runtime library/drivers and iterate over the list of GPUs, attempting to establish a context on all of them. Slurm is able to affect the hardware discovery process of these jobs, which enables a number of these jobs to run alongside each other, even if the GPUs are in exclusive-process mode. To store large quantities of digital pathology slides, we developed a robust, extensible distributed storage solution. We utilized a number of open source tools to create a single filesystem, which can be mounted by any machine on the network. At the lowest layer of abstraction are the hard drives, which were split into 4 60-disk chassis, using 8TB drives. To support these disks, we have two server units, each equipped with Intel Xeon CPUs and 128GB of RAM. At the filesystem level, we have implemented a multi-layer solution that: (1) connects the disks together into a single filesystem/mountpoint using the ZFS (Zettabyte File System) [6], and (2) connects filesystems on multiple machines together to form a single mountpoint using Gluster [7]. ZFS, initially developed by Sun Microsystems, provides disk-level awareness and a filesystem which takes advantage of that awareness to provide fault tolerance. At the filesystem level, ZFS protects against data corruption and the infamous RAID write-hole bug by implementing a journaling scheme (the ZFS intent log, or ZIL) and copy-on-write functionality. Each machine (1 controller + 2 disk chassis) has its own separate ZFS filesystem. Gluster, essentially a meta-filesystem, takes each of these, and provides the means to connect them together over the network and using distributed (similar to RAID 0 but without striping individual files), and mirrored (similar to RAID 1) configurations [8]. By implementing these improvements, it has been possible to expand the storage and computational power of the Neuronix cluster arbitrarily to support the most computationally-intensive endeavors by scaling horizontally. We have greatly improved the scalability of the cluster while maintaining its excellent price/performance ratio [1].« less
  2. JESSIE is a robotic system that enables novice programmers to program social robots by expressing high-level specifications. We employ control synthesis with a tangible front-end to allow users to define complex behavior for which we automatically generate control code. We demonstrate JESSIE in the context of enabling clinicians to create personalized treatments for people with mild cognitive impairment (MCI) on a Kuri robot, in little time and without error. We evaluated JESSIE with neuropsychologists who reported high usability and learnability. They gave suggestions for improvement, including increased support for personalization, multi-party programming, collaborative goal setting, and re-tasking robot role post-deployment,more »which each raise technical and sociotechnical issues in HRI. We exhibit JESSIE's reproducibility by replicating a clinician-created program on a TurtleBot~2. As an open-source means of accessing control synthesis, JESSIE supports reproducibility, scalability, and accessibility of personalized robots for HRI.« less
  3. Surgical robots have been introduced to operating rooms over the past few decades due to their high sensitivity, small size, and remote controllability. The cable-driven nature of many surgical robots allows the systems to be dexterous and lightweight, with diameters as low as 5mm. However, due to the slack and stretch of the cables and the backlash of the gears, inevitable uncertainties are brought into the kinematics calcu- lation [1]. Since the reported end effector position of surgical robots like RAVEN-II [2] is directly calculated using the motor encoder measurements and forward kinematics, it may contain relatively large error upmore »to 10mm, whereas semi-autonomous functions being introduced into abdominal surgeries require position inaccuracy of at most 1mm. To resolve the problem, a cost-effective, real-time and data-driven pipeline for robot end effector position precision estimation is proposed and tested on RAVEN-II. Analysis shows an improved end effector position error of around 1mm RMS traversing through the entire robot workspace without high-resolution motion tracker. The open source code, data sets, videos, and user guide can be found at //github.com/HaonanPeng/RAVEN Neural Network Estimator.« less
  4. Surgical robots have been introduced to operating rooms over the past few decades due to their high sensitivity, small size, and remote controllability. The cable-driven nature of many surgical robots allows the systems to be dexterous and lightweight, with diameters as low as 5mm. However, due to the slack and stretch of the cables and the backlash of the gears, inevitable uncertainties are brought into the kinematics calcu- lation [1]. Since the reported end effector position of surgical robots like RAVEN-II [2] is directly calculated using the motor encoder measurements and forward kinematics, it may contain relatively large error upmore »to 10mm, whereas semi-autonomous functions being introduced into abdominal surgeries require position inaccuracy of at most 1mm. To resolve the problem, a cost-effective, real-time and data-driven pipeline for robot end effector position precision estimation is proposed and tested on RAVEN-II. Analysis shows an improved end effector position error of around 1mm RMS traversing through the entire robot workspace without high-resolution motion tracker. The open source code, data sets, videos, and user guide can be found at //github.com/HaonanPeng/RAVEN Neural Network Estimator.« less
  5. Cyber-Physical Systems (CPS) connected in the form of Internet of Things (IoT) are vulnerable to various security threats, due to the infrastructure-less deployment of IoT devices. Device-to-Device (D2D) authentication of these networks ensures the integrity, authenticity, and confidentiality of information in the deployed area. The literature suggests different approaches to address security issues in CPS technologies. However, they are mostly based on centralized techniques or specific system deployments with higher cost of computation and communication. It is therefore necessary to develop an effective scheme that can resolve the security problems in CPS technologies of IoT devices. In this paper, amore »lightweight Hash-MAC-DSDV (Hash Media Access Control Destination Sequence Distance Vector) routing scheme is proposed to resolve authentication issues in CPS technologies, connected in the form of IoT networks. For this purpose, a CPS of IoT devices (multi-WSNs) is developed from the local-chain and public chain, respectively. The proposed scheme ensures D2D authentication by the Hash-MAC-DSDV mutual scheme, where the MAC addresses of individual devices are registered in the first phase and advertised in the network in the second phase. The proposed scheme allows legitimate devices to modify their routing table and unicast the one-way hash authentication mechanism to transfer their captured data from source towards the destination. Our evaluation results demonstrate that Hash-MAC-DSDV outweighs the existing schemes in terms of attack detection, energy consumption and communication metrics.« less