skip to main content


Title: Eastward Shift of Interannual Climate Variability in the South Indian Ocean since 1950
Abstract The subtropical Indian Ocean dipole (SIOD) and Ningaloo Niño are the two dominant modes of interannual climate variability in the subtropical south Indian Ocean. Observations show that the SIOD has been weakening in the recent decades, while Ningaloo Niño has been strengthening. In this study, we investigate the causes for such changes by analyzing climate model experiments using the NCAR Community Earth System Model, version 1 (CESM1). Ensemble-mean results from CESM1 large-ensemble (CESM1-LE) show that the external forcing causes negligible changes in the amplitudes of the SIOD and Ningaloo Niño, suggesting a dominant role of internal climate variability. Meanwhile, results from CESM1 pacemaker experiments reveal that the observed changes in the two climate modes cannot be attributed to the effect of sea surface temperature anomalies (SSTA) in either the eastern tropical Pacific Ocean or tropical Indian Ocean. By further comparing different ensemble members from the CESM1-LE, we find that a warm pool dipole mode of decadal variability, with opposite SSTA in the southeast Indian Ocean and the western-central tropical Pacific Ocean plays an important role in driving the observed changes in the SIOD and Ningaloo Niño. These changes in the two climate modes have considerable impacts on precipitation and sea level variabilities in the south Indian Ocean region.  more » « less
Award ID(s):
1935279
NSF-PAR ID:
10318600
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Climate
Volume:
35
Issue:
2
ISSN:
0894-8755
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The Indian Ocean has received increasing attention for its large impacts on regional and global climate. However, sea surface temperature (SST) variability arising from Indian Ocean internal processes has not been well understood particularly on decadal and longer timescales, and the external influence from the Tropical Pacific has not been quantified. This paper analyzes the interannual-to-decadal SST variability in the Tropical Indian Ocean in observations and explores the external influence from the Pacific versus internal processes within the Indian Ocean using a Linear Inverse Model (LIM). Coupling between Indian Ocean and tropical Pacific SST anomalies (SSTAs) is assessed both within the LIM dynamical operator and the unpredictable stochastic noise that forces the system. Results show that the observed Indian Ocean Basin (IOB)-wide SSTA pattern is largely a response to the Pacific ENSO forcing, although it in turn has a damping effect on ENSO especially on annual and decadal timescales. On the other hand, the Indian Ocean Dipole (IOD) is an Indian Ocean internal mode that can actively affect ENSO; ENSO also has a returning effect on the IOD, which is rather weak on decadal timescale. The third mode is partly associated with the Subtropical Indian Ocean Dipole (SIOD), and it is primarily generated by Indian Ocean internal processes, although a small component of it is coupled with ENSO. Overall, the amplitude of Indian Ocean internally generated SST variability is comparable to that forced by ENSO, and the Indian Ocean tends to actively influence the tropical Pacific. These results suggest that the Indian-Pacific Ocean interaction is a two-way process. 
    more » « less
  2. The Indian Ocean exhibits multiple modes of interannual climate variability, whose future behaviour is uncertain. Recent analysis of glacial climates has uncovered an additional El Niño-like equatorial mode in the Indian Ocean, which could also emerge in future warm states. Here we explore changes in the tropical Indian Ocean simulated by the Paleoclimate Model Intercomparison Project (PMIP4). These simulations are performed by an ensemble of models contributing to the Coupled Model Intercomparison Project 6 and over four coordinated experiments: three past periods – the mid-Holocene (6000 years ago), the Last Glacial Maximum (21 000 years ago), the last interglacial (127 000 years ago) – and an idealized forcing scenario to examine the impact of greenhouse forcing. The two interglacial experiments are used to characterize the role of orbital variations in the seasonal cycle, whilst the other pair focus on responses to large changes in global temperature. The Indian Ocean Basin Mode (IOBM) is damped in both the mid-Holocene and last interglacial, with the amount related to the damping of the El Niño–Southern Oscillation in the Pacific. No coherent changes in the strength of the IOBM are seen with global temperature changes; neither are changes in the Indian Ocean Dipole (IOD) nor the Niño-like mode. Under orbital forcing, the IOD robustly weakens during the mid-Holocene experiment, with only minor reductions in amplitude during the last interglacial. Orbital changes do impact the SST pattern of the Indian Ocean Dipole, with the cold pole reaching up to the Equator and extending along it. Induced changes in the regional seasonality are hypothesized to be an important control on changes in the Indian Ocean variability. 
    more » « less
  3. Nepal is positioned at the intersection of the Indian Summer Monsoon (ISM) and Subtropical Jet (SJ). Although the ISM is responsible for ~two thirds of annual precipitation, the SJ supplies precipitation in the winter and spring, with the jet migrating southwards to the subcontinent beginning in October and reaching its most southerly position in May before moving northward in June. Using the state-of-the-art Community Earth System Model Last Millennium Ensemble, we investigated potential drivers of the latitudinal position of the SJ over Nepal (referred to as the Himalayan Jet) between 850-2005 CE. The Himalayan Jet Latitude [HJL] is defined as the latitude with the highest wind speed at 200 mb for every longitude containing Nepal (Thapa et al., 2022). In order to identify dominant periodicities in HJL positioning, power-spectral-density analyses were used. For the purpose of evaluating drivers of HJL position, we identified years with a northward or southward displaced HJL, defined as being two standard deviations above or below the average annual HJL position, and used anomaly composites of precipitation, winds (upper- and lower-level), sea surface temperature, moisture transport (lower-level at 850mb), and geopotential height (upper-level at 200mb). Our analyses seem to point toward a link between HJL and the phases of the El Niño Southern Oscillation and Indian Ocean Dipole (IOD): Southerly HJL years often occur during years with an El Niño and a positive IOD event. Northerly HJL years often occur when a Rossby wave train appears to be present over Nepal, indicative of a remote teleconnection. We provide an initial quantification of the physical mechanics of how these climate modes in the Pacific, Indian, and Atlantic Oceans, including remote teleconnections transmitted via atmospheric Rossby Waves, affect HJL. These climate model simulation results are also compared with a sub-decadally-resolved, precisely-dated, composite stalagmite isotope record of ISM variability from Siddha Baba cave, central Nepal. 
    more » « less
  4. Nepal is positioned at the intersection of the Indian Summer Monsoon (ISM) and Subtropical Jet (SJ). Although the ISM is responsible for ~two thirds of annual precipitation, the SJ supplies precipitation in the winter and spring, with the jet migrating southwards to the subcontinent beginning in October and reaching its most southerly position in May before moving northward in June. Using the state-of-the-art Community Earth System Model Last Millennium Ensemble, we investigated potential drivers of the latitudinal position of the SJ over Nepal (referred to as the Himalayan Jet) between 850-2005 CE. The Himalayan Jet Latitude [HJL] is defined as the latitude with the highest wind speed at 200 mb for every longitude containing Nepal (Thapa et al., 2022). In order to identify dominant periodicities in HJL positioning, power-spectral-density analyses were used. For the purpose of evaluating drivers of HJL position, we identified years with a northward or southward displaced HJL, defined as being two standard deviations above or below the average annual HJL position, and used anomaly composites of precipitation, winds (upper- and lower-level), sea surface temperature, moisture transport (lower-level at 850mb), and geopotential height (upper-level at 200mb). Our analyses seem to point toward a link between HJL and the phases of the El Niño Southern Oscillation and Indian Ocean Dipole (IOD): Southerly HJL years often occur during years with an El Niño and a positive IOD event. Northerly HJL years often occur when a Rossby wave train appears to be present over Nepal, indicative of a remote teleconnection. We provide an initial quantification of the physical mechanics of how these climate modes in the Pacific, Indian, and Atlantic Oceans, including remote teleconnections transmitted via atmospheric Rossby Waves, affect HJL. These climate model simulation results are also compared with a sub-decadally-resolved, precisely-dated, composite stalagmite isotope record of ISM variability from Siddha Baba cave, central Nepal. 
    more » « less
  5. null (Ed.)
    Abstract Multi-time-scale variabilities of the Indian Ocean (IO) temperature over 0–700 m are revisited from the perspective of vertical structure. Analysis of historical data for 1955–2018 identifies two dominant types of vertical structures that account for respectively 70.5% and 21.2% of the total variance on interannual-to-interdecadal time scales with the linear trend and seasonal cycle removed. The leading type manifests as vertically coherent warming/cooling with the maximal amplitude at ~100 m and exhibits evident interdecadal variations. The second type shows a vertical dipole structure between the surface (0–60 m) and subsurface (60–400 m) layers and interannual-to-decadal fluctuations. Ocean model experiments were performed to gain insights into underlying processes. The vertically coherent, basinwide warming/cooling of the IO on an interdecadal time scale is caused by changes of the Indonesian Throughflow (ITF) controlled by Pacific climate and anomalous surface heat fluxes partly originating from external forcing. Enhanced changes in the subtropical southern IO arise from positive air–sea feedback among sea surface temperature, winds, turbulent heat flux, cloud cover, and shortwave radiation. Regarding dipole-type variability, the basinwide surface warming is induced by surface heat flux forcing, and the subsurface cooling occurs only in the eastern IO. The cooling in the southeast IO is generated by the weakened ITF, whereas that in the northeast IO is caused by equatorial easterly winds through upwelling oceanic waves. Both El Niño–Southern Oscillation (ENSO) and IO dipole (IOD) events are favorable for the generation of such vertical dipole anomalies. 
    more » « less