Abstract The Indian and Pacific Oceans surround the Maritime Continent (MC). Major modes of sea surface temperature variability in both oceans, including the Indian Ocean Dipole (IOD) and El Niño–Southern Oscillation (ENSO), can strongly affect precipitation on the MC. The prevalence of fires in the MC is closely associated with precipitation amount and terrestrial water storage in September and October. Precipitation and terrestrial water storage, which is a measurement of hydrological drought conditions, are significantly modulated by Indian Ocean Dipole (IOD) and El Niño events. We utilize long-term datasets to study the combined effects of ENSO and the IOD on MC precipitation during the past 100 years (1900–2019) and find that the reductions in MC precipitation and terrestrial water storage are more pronounced during years when El Niño and a positive phase of the IOD (pIOD) coincided. The combined negative effects are produced mainly through an enhanced reduction of upward motion over the MC. Coincident El Niño-pIOD events have occurred more frequently after 1965. However, climate models do not project a higher occurrence of coincident El Niño-pIOD events in a severely warming condition, implying that not the global warming but the natural variability might be the leading cause of this phenomenon. 
                        more » 
                        « less   
                    
                            
                            Indian Ocean variability changes in the Paleoclimate Modelling Intercomparison Project
                        
                    
    
            The Indian Ocean exhibits multiple modes of interannual climate variability, whose future behaviour is uncertain. Recent analysis of glacial climates has uncovered an additional El Niño-like equatorial mode in the Indian Ocean, which could also emerge in future warm states. Here we explore changes in the tropical Indian Ocean simulated by the Paleoclimate Model Intercomparison Project (PMIP4). These simulations are performed by an ensemble of models contributing to the Coupled Model Intercomparison Project 6 and over four coordinated experiments: three past periods – the mid-Holocene (6000 years ago), the Last Glacial Maximum (21 000 years ago), the last interglacial (127 000 years ago) – and an idealized forcing scenario to examine the impact of greenhouse forcing. The two interglacial experiments are used to characterize the role of orbital variations in the seasonal cycle, whilst the other pair focus on responses to large changes in global temperature. The Indian Ocean Basin Mode (IOBM) is damped in both the mid-Holocene and last interglacial, with the amount related to the damping of the El Niño–Southern Oscillation in the Pacific. No coherent changes in the strength of the IOBM are seen with global temperature changes; neither are changes in the Indian Ocean Dipole (IOD) nor the Niño-like mode. Under orbital forcing, the IOD robustly weakens during the mid-Holocene experiment, with only minor reductions in amplitude during the last interglacial. Orbital changes do impact the SST pattern of the Indian Ocean Dipole, with the cold pole reaching up to the Equator and extending along it. Induced changes in the regional seasonality are hypothesized to be an important control on changes in the Indian Ocean variability. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1903482
- PAR ID:
- 10477436
- Publisher / Repository:
- Copernicus Publications
- Date Published:
- Journal Name:
- Climate of the Past
- Volume:
- 19
- Issue:
- 3
- ISSN:
- 1814-9332
- Page Range / eLocation ID:
- 681 to 701
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Interactions among the El Niño‐Southern Oscillation, Indian Ocean Basin mode (IOB), and Indian Ocean Dipole (IOD) significantly impact global climate variability and seasonal predictions. Traditionally, positive IOD (pIOD) and IOB warming events are associated with El Niño, driven by its influence on the tropical Indian Ocean through Walker Circulation anomalies. Our findings enrich this framework, revealing that a pIOD without El Niño can independently trigger IOB warming, and both types of pIODs can induce La Niña events. While El Niño primarily forces IOB warming and subsequent La Niña development via the atmospheric bridge across the Maritime Continent, pIODs independent of El Niño influence IOB warming through oceanic dynamics, which further favors La Niña development in the following year. The NMEFC‐CESM model sensitivity experiments underscore the critical role of thermocline processes in this mechanism, dependent on the pIOD's temperature amplitude, offering vital insights for forecasting post‐IOD, IOB, and La Niña events.more » « less
- 
            Abstract Atlantic Niño is the Atlantic equivalent of El Niño-Southern Oscillation (ENSO), and it has prominent impacts on regional and global climate. Existing studies suggest that the Atlantic Niño may arise from local atmosphere-ocean interaction and is sometimes triggered by the Atlantic Meridional Mode (AMM), with overall weak ENSO contribution. By analyzing observational datasets and performing numerical model experiments, here we show that the Atlantic Niño can be induced by the Indian Ocean Dipole (IOD). We find that the enhanced rainfall in the western tropical Indian Ocean during positive IOD weakens the easterly trade winds over the tropical Atlantic, causing warm anomalies in the central and eastern equatorial Atlantic basin and therefore triggering the Atlantic Niño. Our finding suggests that the cross-basin impact from the tropical Indian Ocean plays a more important role in affecting interannual climate variability than previously thought.more » « less
- 
            Abstract Indian Ocean meridional heat transport (MHTIO) drives climate and ecosystem impacts, through changes to ocean temperature. Improved understanding of natural variability in tropical and subtropical MHTIOis needed to contextualize observations and future projections. Previous studies suggest that El Niño‐Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) can drive variability in MHTIO. However, it is unclear whether internally generated IOD can drive variability in MHTIO, or if the apparent relationship between IOD and MHTIOarises because both are modulated by ENSO. Here, we use a model experiment which dynamically removes ENSO to determine the role of internally forced IOD on MHTIO. We find that IOD is not linked to anomalies in MHTIO. Nevertheless, internal atmospheric variability drives significant MHTIOvariability. There is little evidence for decadal or multidecadal variability in MHTIO, suggesting this may be a region where an anthropogenic trend rises above the level of internal variability sooner.more » « less
- 
            Improved Predictability of the Indian Ocean Dipole Using Seasonally Modulated ENSO Forcing ForecastsAbstract Despite recent progress in seasonal forecast systems, the predictive skill for the Indian Ocean Dipole (IOD) remains typically limited to a lead time of one season or less in both dynamical and empirical models. Here we develop a simple stochastic‐dynamical model (SDM) to predict the IOD using seasonally modulated El Niño–Southern Oscillation (ENSO) forcing together with a seasonally modulated Indian Ocean coupled ocean‐atmosphere feedback. The SDM, with either observed or forecasted ENSO forcing, exhibits generally higher skill and longer lead times for predicting IOD events than the operational Climate Forecast System version 2 and the Scale Interaction Experiment–Frontier system. The improvements mainly originate from better prediction of ENSO‐dependent IOD events and from reducing false alarms. These results affirm our hypothesis that operational IOD predictability beyond persistence is largely controlled by ENSO predictability and the signal‐to‐noise ratio of the system. Therefore, potential future ENSO improvements in models should translate to more skillful IOD predictions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    