skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Appearance and disappearance rates of Phanerozoic marine animal paleocommunities
Abstract Ecological observations and paleontological data show that communities of organisms recur in space and time. Various observations suggest that communities largely disappear in extinction events and appear during radiations. This hypothesis, however, has not been tested on a large scale due to a lack of methods for analyzing fossil data, identifying communities, and quantifying their turnover. We demonstrate an approach for quantifying turnover of communities over the Phanerozoic Eon. Using network analysis of fossil occurrence data, we provide the first estimates of appearance and disappearance rates for marine animal paleocommunities in the 100 stages of the Phanerozoic record. Our analysis of 124,605 fossil collections (representing 25,749 living and extinct marine animal genera) shows that paleocommunity disappearance and appearance rates are generally highest in mass extinctions and recovery intervals, respectively, with rates three times greater than background levels. Although taxonomic change is, in general, a fair predictor of ecologic reorganization, the variance is high, and ecologic and taxonomic changes were episodically decoupled at times in the past. Extinction rate, therefore, is an imperfect proxy for ecologic change. The paleocommunity turnover rates suggest that efforts to assess the ecological consequences of the present-day biodiversity crisis should focus on the selectivity of extinctions and changes in the prevalence of biological interactions.  more » « less
Award ID(s):
1660005 1835717
PAR ID:
10318656
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Geology
Volume:
50
Issue:
3
ISSN:
0091-7613
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The taxonomic and ecologic composition of Earth's biota has shifted dramatically through geologic time, with some clades going extinct while others diversified. Here, we derive a metric that quantifies the change in biotic composition due to extinction or origination and show that it equals the product of extinction/origination magnitude and selectivity (variation in magnitude among groups). We also define metrics that describe the extent to which a recovery (1) reinforced or reversed the effects of extinction on biotic composition and (2) changed composition in ways uncorrelated with the extinction. To demonstrate the approach, we analyzed an updated compilation of stratigraphic ranges of marine animal genera. We show that mass extinctions were not more selective than background intervals at the phylum level; rather, they tended to drive greater taxonomic change due to their higher magnitudes. Mass extinctions did not represent a separate class of events with respect to either strength of selectivity or effect. Similar observations apply to origination during recoveries from mass extinctions, and on average, extinction and origination were similarly selective and drove similar amounts of biotic change. Elevated origination during recoveries drove bursts of compositional change that varied considerably in effect. In some cases, origination partially reversed the effects of extinction, returning the biota toward the pre-extinction composition; in others, it reinforced the effects of the extinction, magnifying biotic change. Recoveries were as important as extinction events in shaping the marine biota, and their selectivity deserves systematic study alongside that of extinction. 
    more » « less
  2. {"Abstract":["Supplemental Dataset for Muscente et al. in Geology "Appearance and disappearance rates of Phanerozoic marine animal paleocommunities"."]} 
    more » « less
  3. The decline in background extinction rates of marine animals through geologic time is an established but unexplained feature of the Phanerozoic fossil record. There is also growing consensus that the ocean and atmosphere did not become oxygenated to near-modern levels until the mid-Paleozoic, coinciding with the onset of generally lower extinction rates. Physiological theory provides us with a possible causal link between these two observations—predicting that the synergistic impacts of oxygen and temperature on aerobic respiration would have made marine animals more vulnerable to ocean warming events during periods of limited surface oxygenation. Here, we evaluate the hypothesis that changes in surface oxygenation exerted a first-order control on extinction rates through the Phanerozoic using a combined Earth system and ecophysiological modeling approach. We find that although continental configuration, the efficiency of the biological carbon pump in the ocean, and initial climate state all impact the magnitude of modeled biodiversity loss across simulated warming events, atmospheric oxygen is the dominant predictor of extinction vulnerability, with metabolic habitat viability and global ecophysiotype extinction exhibiting inflection points around 40% of present atmospheric oxygen. Given this is the broad upper limit for estimates of early Paleozoic oxygen levels, our results are consistent with the relative frequency of high-magnitude extinction events (particularly those not included in the canonical big five mass extinctions) early in the Phanerozoic being a direct consequence of limited early Paleozoic oxygenation and temperature-dependent hypoxia responses. 
    more » « less
  4. Abstract Ecosystem engineers are organisms that modify their physical habitats in a way that alters resource availability and the structure of the communities they live in. The evolution of ecosystem engineers over the course of Earth history has thus been suggested to have been a driver of macroevolutionary and macroecological changes that are observed in the fossil record. However, the rise to dominance of ecosystem engineers has not been thoroughly reconstructed. Here, we investigate the history of bioturbation and reef‐building (two of the most important marine ecosystem engineering behaviours today) over the Phanerozoic. Using fossil occurrences from the Paleobiology Database, we reconstruct how common communities influenced by ecosystem engineers were in the oceans, how dominant ecosystem engineers were within their own communities, and the taxonomic and ecological composition of bioturbators and reef‐builders. We find that bioturbation has become an increasingly common ecosystem engineering behaviour over the Phanerozoic, while reef‐building ecosystem engineers have not become more dominant since their Devonian apex. We also identify unique bioturbation and reef‐building regimes that are characterized by different ecosystem engineering taxonomic groups, ecological modes, and dominance, suggesting that the nature of ecosystem engineering has at times rapidly shifted over the course of the Phanerozoic. These reconstructions will serve as important data for understanding how ecosystem engineers have driven changes in biodiversity and ecosystem structure over the course of Earth history. 
    more » « less
  5. Refinements of the geological timescale driven by the increasing precision and accuracy of radiometric dating have revealed an apparent correlation between large igneous provinces (LIPs) and intervals of Phanerozoic faunal turnover that has been much discussed at a qualitative level. However, the extent to which such correlations are likely to occur by chance has yet to be quantitatively tested, and other kill mechanisms have been suggested for many mass extinctions. Here, we show that the degree of temporal correlation between continental LIPs and faunal turnover in the Phanerozoic is unlikely to occur by chance, suggesting a causal relationship linking extinctions and continental flood basalts. The relationship is stronger for LIPs with higher estimated eruptive rates and for stage boundaries with higher extinction magnitudes. This suggests LIP magma degassing as a primary kill mechanism for mass extinctions and other intervals of faunal turnover, which may be related to CO 2 ,   SO 2 , Cl, and F release. Our results suggest continental LIPs as a major, direct driver of extinctions throughout the Phanerozoic. 
    more » « less