skip to main content


Title: On electrical analysis of Al-rich p-AlGaN films for III-nitride UV light emitters
Abstract In this work, an alternative scheme to estimate the resistivity and ionization energy of Al-rich p-AlGaN epitaxial films is developed using two large-area ohmic contacts. Accordingly, the resistivities measured using current–voltage measurements were observed to corroborate the Hall measurements in the Van der Pauw configuration. A free hole concentration of ∼1.5 × 10 17 cm −3 and low ionization energy of ∼65 meV in Mg-doped Al 0.7 Ga 0.3 N films is demonstrated. Nearly an order of magnitude lower hydrogen concentration than Mg in the as-grown AlGaN films is thought to reduce the Mg passivation and enable higher hole concentrations in Al-rich p-AlGaN films, compared to p-GaN films. The alternate methodology proposed in this work is expected to provide a simpler pathway to evaluate the electrical characteristics of Al-rich p-AlGaN films for future III-nitride ultraviolet light emitters.  more » « less
Award ID(s):
1916800 1653383
NSF-PAR ID:
10318726
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Semiconductor Science and Technology
Volume:
37
Issue:
1
ISSN:
0268-1242
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Record low resistivities of 10 and 30 Ω cm and room-temperature free hole concentrations as high as 3 × 1018 cm−3were achieved in bulk doping of Mg in Al0.6Ga0.4N films grown on AlN single crystalline wafer and sapphire. The highly conductive films exhibited a low ionization energy of 50 meV and impurity band conduction. Both high Mg concentration (>2 × 1019cm−3) and low compensation were required to achieve impurity band conduction and high p-type conductivity. The formation of VN-related compensators was actively suppressed by chemical potential control during the deposition process. This work overcomes previous limitations in p-type aluminum gallium nitride (p-AlGaN) and offers a technologically viable solution to high p-conductivity in AlGaN and AlN.

     
    more » « less
  2. Polarization-induced (Pi) distributed or bulk doping in GaN, with a zero dopant ionization energy, can reduce temperature or frequency dispersions in impurity-doped p–n junctions caused by the deep-acceptor-nature of Mg, thus offering GaN power devices promising prospects. Before comprehensively assessing the benefits of Pi-doping, ideal junction behaviors and high-voltage capabilities should be confirmed. In this work, we demonstrate near-ideal forward and reverse I–V characteristics in Pi-doped GaN power p–n diodes, which incorporates linearly graded, coherently strained AlGaN layers. Hall measurements show a net increase in the hole concentration of 8.9 × 1016 cm−3in the p-layer as a result of the polarization charge. In the Pi-doped n-layer, a record-low electron concentration of 2.5 × 1016 cm−3is realized due to the gradual grading of Al0-0.72GaN over 1  μm. The Pi-doped p–n diodes have an ideality factor as low as 1.1 and a 0.10 V higher turn-on voltage than the impurity-doped p–n diodes due to the increase in the bandgap at the junction edge. A differential specific on-resistance of 0.1 mΩ cm2is extracted from the Pi-doped p–n diodes, similar with the impurity-doped counterpart. The Pi-doped diodes show an avalanche breakdown voltage of ∼1.25 kV, indicating a high reverse blocking capability even without an ideal edge-termination. This work confirms that distributed Pi-doping can be incorporated in high-voltage GaN power devices to increase hole concentrations while maintaining excellent junction properties.

     
    more » « less
  3. Record-low p-type resistivities of 9.7 and 37 Ω cm were achieved in Al0.7Ga0.3N and Al0.8Ga0.2N films, respectively, grown on single-crystal AlN substrate by metalorganic chemical vapor deposition. A two-band conduction model was introduced to explain the anomalous thermal behavior of resistivity and the Hall coefficient. Relatively heavy Mg doping (5 × 1019 cm−3), in conjunction with compensation control, enabled the formation of an impurity band exhibiting a shallow activation energy of ∼30 meV for a wide temperature range. Valence band conduction associated with a large Mg ionization energy was dominant above 500 K. The apparently anomalous results deviating from the classical semiconductor physics were attributed to fundamentally different Hall scattering factors for impurity and valence band conduction. This work demonstrates the utility of impurity band conduction to achieve technologically relevant p-type conductivity in Al-rich AlGaN.

     
    more » « less
  4. Ultra-violet light emitting diodes (UV-LEDs) and lasers based on the III-Nitride material system are very promising since they enable compact, safe, and efficient solid-state sources of UV light for a range of applications. The primary challenges for UV LEDs are related to the poor conductivity of p-AlGaN layers and the low light extraction efficiency of LED structures. Tunnel junction-based UV LEDs provide a distinct and unique pathway to eliminate several challenges associated with UV LEDs1-4. In this work, we present for the first time, a reversed-polarization (p-down) AlGaN based UV-LED utilizing bottom tunnel junction (BTJ) design. We show that compositional grading enables us to achieve the lowest reported voltage drop of 1.1 V at 20 A/cm2 among transparent AlGaN based tunnel junctions at this Al-composition. Compared to conventional LED design, a p-down structure offers lower voltage drop because the depletion barrier for both holes and electrons is lower due to polarization fields aligning with the depletion field. Furthermore, the bottom tunnel junction also allows us to use polarization grading to realize better p- and n-type doping to improve tunneling transport. The epitaxial structure of the UV-LED was grown by plasma-assisted molecular beam epitaxy (PAMBE) on metal-organic chemical vapor deposition (MOCVD)-grown n-type Al0.3Ga0.7N templates. The transparent TJ was grown using graded n++-Al0.3Ga0.7N→ n++-Al0.4Ga0.6N (Si=3×1020 cm-3) and graded p++-Al0.4Ga0.6N →p++-Al0.3Ga0.7N (Mg=1×1020 cm-3) to take advantage of induced 3D polarization charges. The high number of charges at the tunnel junction region leads to lower depletion width and efficient hole injection to the p-type layer. The UV LED active region consists of three 2.5 nm Al0.2Ga0.8N quantum wells and 7 nm Al0.3Ga0.6N quantum barriers followed by 12 nm of p- Al0.46Ga0.64N electron blocking layer (EBL). The active region was grown on top of the tunnel junction. A similar LED with p-up configuration was also grown to compare the electrical performance. The surface morphology examined by atomic force microscopy (AFM) shows smooth growth features with a surface roughness of 1.9 nm. The dendritic features on the surface are characteristic of high Si doping on the surface. The composition of each layer was extracted from the scan by high resolution x-ray diffraction (HR-XRD). The electrical characteristics of a device show a voltage drop of 4.9 V at 20 A/cm2, which corresponds to a tunnel junction voltage drop of ~ 1.1 V. This is the best lowest voltage for transparent 30% AlGaN tunnel junctions to-date and is comparable with the lowest voltage drop reported previously on non-transparent (InGaN-based) tunnel junctions at similar Al mole fraction AlGaN. On-wafer electroluminescence measurements on patterned light-emitting diodes showed single peak emission wavelength of 325 nm at 100 A/cm2 which corresponds to Al0.2Ga0.8N, confirming that efficient hole injection was achieved within the structure. The device exhibits a wavelength shift from 330 nm to 325 nm with increasing current densities from 10A/cm2 to 100A/cm2. In summary, we have demonstrated a fully transparent bottom AlGaN homojunction tunnel junction that enables p-down reversed polarization ultraviolet light emitting diodes, and has very low voltage drop at the tunnel junction. This work could enable new flexibility in the design of future III-Nitride ultraviolet LEDs and lasers. 
    more » « less
  5. Abstract

    Ultrawide‐bandgap semiconductors such as AlN, BN, and diamond hold tremendous promise for high‐efficiency deep‐ultraviolet optoelectronics and high‐power/frequency electronics, but their practical application has been limited by poor current conduction. Through a combined theoretical and experimental study, it is shown that a critical challenge can be addressed for AlN nanostructures by using N‐rich epitaxy. Under N‐rich conditions, the p‐type Al‐substitutional Mg‐dopant formation energy is significantly reduced by 2 eV, whereas the formation energy for N‐vacancy related compensating defects is increased by ≈3 eV, both of which are essential to achieve high hole concentrations of AlN. Detailed analysis of the current−voltage characteristics of AlN p‐i‐n diodes suggests that current conduction is dominated by hole‐carrier tunneling at room temperature, which is directly related to the activation energy of Mg dopants. At high Mg concentrations, the dispersion of Mg acceptor energy levels leads to drastically reduced activation energy for a portion of Mg dopants, evidenced by the small tunneling energy of 67 meV, which explains the efficient current conduction and the very small turn‐on voltage (≈5 V) for the diodes made of nanoscale AlN. This work shows that nanostructures can overcome the dopability challenges of ultrawide‐bandgap semiconductors and significantly increase the efficiency of devices.

     
    more » « less