skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: High p-conductivity in AlGaN enabled by polarization field engineering
High p-conductivity (0.7 Ω−1 cm−1) was achieved in high-Al content AlGaN via Mg doping and compositional grading. A clear transition between the valence band and impurity band conduction mechanisms was observed. The transition temperature depended strongly on the compositional gradient and to some degree on the Mg doping level. A model is proposed to explain the role of the polarization field in enhancing the conductivity in Mg-doped graded AlGaN films and the transition between the two conduction types. This study offers a viable path to technologically useful p-conductivity in AlGaN.  more » « less
Award ID(s):
1916800 1653383 1508854
PAR ID:
10493182
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
Applied Physics Letters
Volume:
122
Issue:
15
ISSN:
0003-6951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Record low resistivities of 10 and 30 Ω cm and room-temperature free hole concentrations as high as 3 × 1018 cm−3were achieved in bulk doping of Mg in Al0.6Ga0.4N films grown on AlN single crystalline wafer and sapphire. The highly conductive films exhibited a low ionization energy of 50 meV and impurity band conduction. Both high Mg concentration (>2 × 1019cm−3) and low compensation were required to achieve impurity band conduction and high p-type conductivity. The formation of VN-related compensators was actively suppressed by chemical potential control during the deposition process. This work overcomes previous limitations in p-type aluminum gallium nitride (p-AlGaN) and offers a technologically viable solution to high p-conductivity in AlGaN and AlN. 
    more » « less
  2. Record-low p-type resistivities of 9.7 and 37 Ω cm were achieved in Al0.7Ga0.3N and Al0.8Ga0.2N films, respectively, grown on single-crystal AlN substrate by metalorganic chemical vapor deposition. A two-band conduction model was introduced to explain the anomalous thermal behavior of resistivity and the Hall coefficient. Relatively heavy Mg doping (5 × 1019 cm−3), in conjunction with compensation control, enabled the formation of an impurity band exhibiting a shallow activation energy of ∼30 meV for a wide temperature range. Valence band conduction associated with a large Mg ionization energy was dominant above 500 K. The apparently anomalous results deviating from the classical semiconductor physics were attributed to fundamentally different Hall scattering factors for impurity and valence band conduction. This work demonstrates the utility of impurity band conduction to achieve technologically relevant p-type conductivity in Al-rich AlGaN. 
    more » « less
  3. A two-band transport model is proposed to explain electrical conduction in graded aluminum gallium nitride layers, where the free hole conduction in the valence band is favored at high temperatures and hopping conduction in the impurity band dominates at low temperatures. The model simultaneously explains the significantly lowered activation energy for p-type conduction (∼10 meV), a nearly constant sheet conductivity at lower temperatures (200–330 K), and the anomalous reversal of the Hall coefficient caused by the negative sign of the Hall scattering factor in the hopping conduction process. A comparison between the uniform and graded samples suggests that compositional grading significantly enhances the probability of phonon-assisted hopping transitions between the Mg atoms. 
    more » « less
  4. In standard doping, adding charge carrier to a compound results in a shift of the Fermi level towards the conduction band for electron doping and towards the valence band for hole doping. We discuss the curious case of antidoping, where the direction of band movements in response to doping is reversed. Specifically, p-type antidoping moves the previously occupied bands to the principal conduction band resulting in an increase of band gap energy and reduction of electronic conductivity. We find that this is a generic behavior for a class of materials: early transition and rare earth metal (e.g., Ti, Ce) oxides where the sum of composition-weighed formal oxidation states is positive; such compounds tend to form the well-known electron-trapped intermediate bands localized on the reduced cation orbitals. What is less known is that doping by a hole annihilates a single trapped electron on a cation. The latter thus becomes electronically inequivalent with respect to the normal cation in the undoped lattice, thus representing a symmetry-breaking effect. We give specific theoretical predictions for target compounds where hole antidoping might be observed experimentally: Magnéli-like phases (i.e., CeO2-x and TiO2-x) and ternary compounds (i.e., Ba2Ti6O13 and Ba4Ti12O27), and note that this unique behavior opens the possibility of unconventional control of materials conductivity by doping. 
    more » « less
  5. The development of high performance wide-bandgap AlGaN channel transistors with high current densities and reduced Ohmic losses necessitates extremely highly doped, high Al content AlGaN epilayers for regrown source/drain contact regions. In this work, we demonstrate the achievement of semi-metallic conductivity in silicon (Si) doped N-polar Al0.6Ga0.4N grown on C-face 4H-SiC substrates by molecular beam epitaxy. Under optimized conditions, the AlGaN epilayer shows smooth surface morphology and a narrow photoluminescence spectral linewidth, without the presence of any secondary peaks. A favorable growth window is identified wherein the free electron concentration reaches as high as ∼1.8 × 1020 cm−3 as obtained from Hall measurements, with a high mobility of 34 cm2/V·s, leading to a room temperature resistivity of only 1 mΩ·cm. Temperature-dependent Hall measurements show that the electron concentration, mobility, and sheet resistance do not depend on temperature, clearly indicating dopant Mott transition to a semi-metallic state, wherein the activation energy (Ea) falls to 0 meV at this high value of Si doping for the AlGaN films. This achievement of semi-metallic conductivity in Si doped N-polar high Al content AlGaN is instrumental for advancing ultrawide bandgap electronic and optoelectronic devices. 
    more » « less