skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: Managing Queues with Different Resource Requirements
Queueing models that are used to capture various service settings typically assume that customers require a single unit of resource (server) to be processed. However, there are many service settings where such an assumption may fail to capture the heterogeneity in resource requirements of different customers. We propose a multiserver queueing model with multiple customer classes in which customers from different classes may require different amounts of resources to be served. We study the optimal scheduling policy for such systems. To balance holding costs, service rates, resource requirement, and priority-induced idleness, we develop an index-based policy that we refer to as the idle-avoid [Formula: see text] rule. For a two-class two-server model, where policy-induced idleness can have a big impact on system performance, we characterize cases where the idle-avoid [Formula: see text] rule is optimal. In other cases, we establish a uniform performance bound on the amount of suboptimality incurred by the idle-avoid [Formula: see text] rule. For general multiclass multiserver queues, we establish the asymptotic optimality of the idle-avoid [Formula: see text] rule in the many-server regime. For long-time horizons, we show that the idle-avoid [Formula: see text] is throughput optimal. Our theoretical results, along with numerical experiments, provide support for the good and robust performance of the proposed policy.  more » « less
Award ID(s):
1762544
NSF-PAR ID:
10383874
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Operations Research
ISSN:
0030-364X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Service systems are typically limited resource environments where scarce capacity is reserved for the most urgent customers. However, there has been a growing interest in the use of proactive service when a less urgent customer may become urgent while waiting. On one hand, providing service for customers when they are less urgent could mean that fewer resources are needed to fulfill their service requirement. On the other hand, using limited capacity for customers who may never need the service in the future takes the capacity away from other more urgent customers who need it now. To understand this tension, we propose a multiserver queueing model with two customer classes: moderate and urgent. We allow customers to transition classes while waiting. In this setting, we characterize how moderate and urgent customers should be prioritized for service when proactive service for moderate customers is an option. We identify an index, the modified [Formula: see text]-index, which plays an important role in determining the optimal scheduling policy. This index lends itself to an intuitive interpretation of how to balance holding costs, service times, abandonments, and transitions between customer classes. This paper was accepted by David Simchi-Levi, stochastic models and simulation. 
    more » « less
  2. Multiserver-job systems, where jobs require concurrent service at many servers, occur widely in practice. Essentially all of the theoretical work on multiserver-job systems focuses on maximizing utilization, with almost nothing known about mean response time. In simpler settings, such as various known-size single-server-job settings, minimizing mean response time is merely a matter of prioritizing small jobs. However, for the multiserver-job system, prioritizing small jobs is not enough, because we must also ensure servers are not unnecessarily left idle. Thus, minimizing mean response time requires prioritizing small jobs while simultaneously maximizing throughput. Our question is how to achieve these joint objectives. We devise the ServerFilling-SRPT scheduling policy, which is the first policy to minimize mean response time in the multiserver-job model in the heavy traffic limit. In addition to proving this heavy-traffic result, we present empirical evidence that ServerFilling-SRPT outperforms all existing scheduling policies for all loads, with improvements by orders of magnitude at higher loads. Because ServerFilling-SRPT requires knowing job sizes, we also define the ServerFilling-Gittins policy, which is optimal when sizes are unknown or partially known. 
    more » « less
  3. Problem definition: We study scheduling multi-class impatient customers in parallel server queueing systems. At the time of arrival, customers are identified as being one of many classes, and the class represents the service and patience time distributions as well as cost characteristics. From the system’s perspective, customers of the same class at time of arrival get differentiated on their residual patience time as they wait in queue. We leverage this property and propose two novel and easy-to-implement multi-class scheduling policies. Academic/practical relevance: Scheduling multi-class impatient customers is an important and challenging topic, especially when customers’ patience times are nonexponential. In these contexts, even for customers of the same class, processing them under the first-come, first-served (FCFS) policy is suboptimal. This is because, at time of arrival, the system only knows the overall patience distribution from which a customer’s patience value is drawn, and as time elapses, the estimate of the customer’s residual patience time can be further updated. For nonexponential patience distributions, such an update indeed reveals additional information, and using this information to implement within-class prioritization can lead to additional benefits relative to the FCFS policy. Methodology: We use fluid approximations to analyze the multi-class scheduling problem with ideas borrowed from convex optimization. These approximations are known to perform well for large systems, and we use simulations to validate our proposed policies for small systems. Results: We propose a multi-class time-in-queue policy that prioritizes both across customer classes and within each class using a simple rule and further show that most of the gains of such a policy can be achieved by deviating from within-class FCFS for at most one customer class. In addition, for systems with exponential patience times, our policy reduces to a simple priority-based policy, which we prove is asymptotically optimal for Markovian systems with an optimality gap that does not grow with system scale. Managerial implications: Our work provides managers ways of improving quality of service to manage parallel server queueing systems. We propose easy-to-implement policies that perform well relative to reasonable benchmarks. Our work also adds to the academic literature on multi-class queueing systems by demonstrating the joint benefits of cross- and within-class prioritization.

    Funding: A. Bassamboo received financial support from the National Science Foundation [Grant CMMI 2006350]. C. (A.) Wu received financial support from the Hong Kong General Research Fund [Early Career Scheme, Project 26206419].

    Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2023.1190 .

     
    more » « less
  4. We consider a distributed server system consisting of a large number of servers, each with limited capacity on multiple resources (CPU, memory, etc.). Jobs with different rewards arrive over time and require certain amounts of resources for the duration of their service. When a job arrives, the system must decide whether to admit it or reject it, and if admitted, in which server to schedule it. The objective is to maximize the expected total reward received by the system. This problem is motivated by control of cloud computing clusters, in which jobs are requests for virtual machines (VMs) or containers that reserve resources for various services, and rewards represent service priority of requests or price paid per time unit of service. We study this problem in an asymptotic regime where the number of servers and jobs’ arrival rates scale by a factor L, as L becomes large. We propose a resource reservation policy that asymptotically achieves at least 1/2, and under certain monotone property on jobs’ rewards and resources, at least [Formula: see text] of the optimal expected reward. The policy automatically scales the number of VM slots for each job type as the demand changes and decides in which servers the slots should be created in advance, without the knowledge of traffic rates. 
    more » « less
  5. null (Ed.)
    We study the dynamic assortment planning problem, where for each arriving customer, the seller offers an assortment of substitutable products and the customer makes the purchase among offered products according to an uncapacitated multinomial logit (MNL) model. Because all the utility parameters of the MNL model are unknown, the seller needs to simultaneously learn customers’ choice behavior and make dynamic decisions on assortments based on the current knowledge. The goal of the seller is to maximize the expected revenue, or, equivalently, to minimize the expected regret. Although dynamic assortment planning problem has received an increasing attention in revenue management, most existing policies require the estimation of mean utility for each product and the final regret usually involves the number of products [Formula: see text]. The optimal regret of the dynamic assortment planning problem under the most basic and popular choice model—the MNL model—is still open. By carefully analyzing a revenue potential function, we develop a trisection-based policy combined with adaptive confidence bound construction, which achieves an item-independent regret bound of [Formula: see text], where [Formula: see text] is the length of selling horizon. We further establish the matching lower bound result to show the optimality of our policy. There are two major advantages of the proposed policy. First, the regret of all our policies has no dependence on [Formula: see text]. Second, our policies are almost assumption-free: there is no assumption on mean utility nor any “separability” condition on the expected revenues for different assortments. We also extend our trisection search algorithm to capacitated MNL models and obtain the optimal regret [Formula: see text] (up to logrithmic factors) without any assumption on the mean utility parameters of items. 
    more » « less