skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimal Scheduling of Proactive Service with Customer Deterioration and Improvement
Service systems are typically limited resource environments where scarce capacity is reserved for the most urgent customers. However, there has been a growing interest in the use of proactive service when a less urgent customer may become urgent while waiting. On one hand, providing service for customers when they are less urgent could mean that fewer resources are needed to fulfill their service requirement. On the other hand, using limited capacity for customers who may never need the service in the future takes the capacity away from other more urgent customers who need it now. To understand this tension, we propose a multiserver queueing model with two customer classes: moderate and urgent. We allow customers to transition classes while waiting. In this setting, we characterize how moderate and urgent customers should be prioritized for service when proactive service for moderate customers is an option. We identify an index, the modified [Formula: see text]-index, which plays an important role in determining the optimal scheduling policy. This index lends itself to an intuitive interpretation of how to balance holding costs, service times, abandonments, and transitions between customer classes. This paper was accepted by David Simchi-Levi, stochastic models and simulation.  more » « less
Award ID(s):
1944209
PAR ID:
10317893
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Management Science
ISSN:
0025-1909
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cellular service carriers often employ reactive strategies to assist customers who experience non-outage related individual service degradation issues (e.g., service performance degradations that do not impact customers at scale and are likely caused by network provisioning issues for individual devices). Customers need to contact customer care to request assistance before these issues are resolved. This paper presents our experience with PACE (ProActive customer CarE), a novel, proactive system that monitors, troubleshoots and resolves individual service issues, without having to rely on customers to first contact customer care for assistance. PACE seeks to improve customer experience and care operation efficiency by automatically detecting individual (non-outage related) service issues, prioritizing repair actions by predicting customers who are likely to contact care to report their issues, and proactively triggering actions to resolve these issues. We develop three machine learning-based prediction models, and implement a fully automated system that integrates these prediction models and takes resolution actions for individual customers.We conduct a large-scale trace-driven evaluation using real-world data collected from a major cellular carrier in the US, and demonstrate that PACE is able to predict customers who are likely to contact care due to non-outage related individual service issues with high accuracy. We further deploy PACE into this cellular carrier network. Our field trial results show that PACE is effective in proactively resolving non-outage related individual customer service issues, improving customer experience, and reducing the need for customers to report their service issues. 
    more » « less
  2. In this paper, we consider an integrated vehicle routing and service scheduling problem for serving customers in distributed locations who need pick-up, drop-off, or delivery services. We take into account the random trip time, nonnegligible service time, and possible customer cancellations, under which an ill-designed schedule may lead to undesirable vehicle idleness and customer waiting. We build a stochastic mixed-integer program to minimize the operational cost plus expected penalty cost of customers’ waiting time, vehicles’ idleness, and overtime. Furthermore, to handle real-time arrived service requests, we develop K-means clustering-based algorithms to dynamically update planned routes and schedules. The algorithms assign customers to vehicles based on similarities and then plan schedules on each vehicle separately. We conduct numerical experiments based on diverse instances generated from census data and data from the Ford Motor Company’s GoRide service, to evaluate result sensitivity and to compare the in-sample and out-of-sample performance of different approaches. Managerial insights are provided using numerical results based on different parameter choices and uncertainty settings. 
    more » « less
  3. Gentry, E; Ju, F; Liu, X (Ed.)
    This research investigates optimal pricing strategies in a service-providing queueing system where customers may renege before service completion. Prices are quoted upon customer arrivals and the incoming customers join the system if their willingness to pay exceeds the quoted price. While waiting in line or during service, customers may get impatient and leave without service, incurring an abandonment cost. There is also a per-unit time per-customer holding cost. Our objective is to maximize the long-run average profit through optimal pricing policies. We model the problem as a Markov decision process and identify the optimal pricing using policy iteration. We also study the structure of the optimal pricing policy. Furthermore, we show that under mild assumptions, the optimal price increases as the number of customers in the system increases. When those assumptions do not hold, optimal price decreases and then increases as the number of customers in the system grows. 
    more » « less
  4. Gentry, E; Ju, F; Liu, X (Ed.)
    This research investigates optimal pricing strategies in a service-providing queueing system where customers may renege before service completion. Prices are quoted upon customer arrivals and the incoming customers join the system if their willingness to pay exceeds the quoted price. While waiting in line or during service, customers may get impatient and leave without service, incurring an abandonment cost. There is also a per-unit time per-customer holding cost. Our objective is to maximize the long-run average profit through optimal pricing policies. We model the problem as a Markov decision process and identify the optimal pricing using policy iteration. We also study the structure of the optimal pricing policy. Furthermore, we show that under mild assumptions, the optimal price increases as the number of customers in the system increases. When those assumptions do not hold, optimal price decreases and then increases as the number of customers in the system grows. 
    more » « less
  5. Queueing models that are used to capture various service settings typically assume that customers require a single unit of resource (server) to be processed. However, there are many service settings where such an assumption may fail to capture the heterogeneity in resource requirements of different customers. We propose a multiserver queueing model with multiple customer classes in which customers from different classes may require different amounts of resources to be served. We study the optimal scheduling policy for such systems. To balance holding costs, service rates, resource requirement, and priority-induced idleness, we develop an index-based policy that we refer to as the idle-avoid [Formula: see text] rule. For a two-class two-server model, where policy-induced idleness can have a big impact on system performance, we characterize cases where the idle-avoid [Formula: see text] rule is optimal. In other cases, we establish a uniform performance bound on the amount of suboptimality incurred by the idle-avoid [Formula: see text] rule. For general multiclass multiserver queues, we establish the asymptotic optimality of the idle-avoid [Formula: see text] rule in the many-server regime. For long-time horizons, we show that the idle-avoid [Formula: see text] is throughput optimal. Our theoretical results, along with numerical experiments, provide support for the good and robust performance of the proposed policy. 
    more » « less