skip to main content


Title: Optimal Scheduling of Proactive Service with Customer Deterioration and Improvement
Service systems are typically limited resource environments where scarce capacity is reserved for the most urgent customers. However, there has been a growing interest in the use of proactive service when a less urgent customer may become urgent while waiting. On one hand, providing service for customers when they are less urgent could mean that fewer resources are needed to fulfill their service requirement. On the other hand, using limited capacity for customers who may never need the service in the future takes the capacity away from other more urgent customers who need it now. To understand this tension, we propose a multiserver queueing model with two customer classes: moderate and urgent. We allow customers to transition classes while waiting. In this setting, we characterize how moderate and urgent customers should be prioritized for service when proactive service for moderate customers is an option. We identify an index, the modified [Formula: see text]-index, which plays an important role in determining the optimal scheduling policy. This index lends itself to an intuitive interpretation of how to balance holding costs, service times, abandonments, and transitions between customer classes. This paper was accepted by David Simchi-Levi, stochastic models and simulation.  more » « less
Award ID(s):
1944209
NSF-PAR ID:
10317893
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Management Science
ISSN:
0025-1909
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cellular service carriers often employ reactive strategies to assist customers who experience non-outage related individual service degradation issues (e.g., service performance degradations that do not impact customers at scale and are likely caused by network provisioning issues for individual devices). Customers need to contact customer care to request assistance before these issues are resolved. This paper presents our experience with PACE (ProActive customer CarE), a novel, proactive system that monitors, troubleshoots and resolves individual service issues, without having to rely on customers to first contact customer care for assistance. PACE seeks to improve customer experience and care operation efficiency by automatically detecting individual (non-outage related) service issues, prioritizing repair actions by predicting customers who are likely to contact care to report their issues, and proactively triggering actions to resolve these issues. We develop three machine learning-based prediction models, and implement a fully automated system that integrates these prediction models and takes resolution actions for individual customers.We conduct a large-scale trace-driven evaluation using real-world data collected from a major cellular carrier in the US, and demonstrate that PACE is able to predict customers who are likely to contact care due to non-outage related individual service issues with high accuracy. We further deploy PACE into this cellular carrier network. Our field trial results show that PACE is effective in proactively resolving non-outage related individual customer service issues, improving customer experience, and reducing the need for customers to report their service issues. 
    more » « less
  2. In this paper, we consider an integrated vehicle routing and service scheduling problem for serving customers in distributed locations who need pick-up, drop-off, or delivery services. We take into account the random trip time, nonnegligible service time, and possible customer cancellations, under which an ill-designed schedule may lead to undesirable vehicle idleness and customer waiting. We build a stochastic mixed-integer program to minimize the operational cost plus expected penalty cost of customers’ waiting time, vehicles’ idleness, and overtime. Furthermore, to handle real-time arrived service requests, we develop K-means clustering-based algorithms to dynamically update planned routes and schedules. The algorithms assign customers to vehicles based on similarities and then plan schedules on each vehicle separately. We conduct numerical experiments based on diverse instances generated from census data and data from the Ford Motor Company’s GoRide service, to evaluate result sensitivity and to compare the in-sample and out-of-sample performance of different approaches. Managerial insights are provided using numerical results based on different parameter choices and uncertainty settings. 
    more » « less
  3. Queueing models that are used to capture various service settings typically assume that customers require a single unit of resource (server) to be processed. However, there are many service settings where such an assumption may fail to capture the heterogeneity in resource requirements of different customers. We propose a multiserver queueing model with multiple customer classes in which customers from different classes may require different amounts of resources to be served. We study the optimal scheduling policy for such systems. To balance holding costs, service rates, resource requirement, and priority-induced idleness, we develop an index-based policy that we refer to as the idle-avoid [Formula: see text] rule. For a two-class two-server model, where policy-induced idleness can have a big impact on system performance, we characterize cases where the idle-avoid [Formula: see text] rule is optimal. In other cases, we establish a uniform performance bound on the amount of suboptimality incurred by the idle-avoid [Formula: see text] rule. For general multiclass multiserver queues, we establish the asymptotic optimality of the idle-avoid [Formula: see text] rule in the many-server regime. For long-time horizons, we show that the idle-avoid [Formula: see text] is throughput optimal. Our theoretical results, along with numerical experiments, provide support for the good and robust performance of the proposed policy. 
    more » « less
  4. As empirically observed in restaurants, call centers, and intensive care units, service times needed by customers are often related to the delay they experience in queue. Two forms of dependence mechanisms in service systems with customer abandonment immediately come to mind: First, the service requirement of a customer may evolve while waiting in queue, in which case the service time of each customer is endogenously determined by the system’s dynamics. Second, customers may arrive (exogenously) to the system with a service and patience time that are stochastically dependent, so that the service-time distribution of the customers that end up in service is different than that of the entire customer population. We refer to the former type of dependence as endogenous and to the latter as exogenous. Because either dependence mechanism can have significant impacts on a system’s performance, it should be identified and taken into consideration for performance-evaluation and decision-making purposes. However, identifying the source of dependence from observed data is hard because both the service times and patience times are censored due to customer abandonment. Further, even if the dependence is known to be exogenous, there remains the difficult problem of fitting a joint service-patience times distribution to the censored data. We address these two problems and provide a solution to the corresponding statistical challenges by proving that both problems can be avoided. We show that, for any exogenous dependence, there exists a corresponding endogenous dependence, such that the queuing dynamics under either dependence have the same law. We also prove that there exist endogenous dependencies for which no equivalent exogenous dependence exists. Therefore, the endogenous dependence can be considered as a generalization of the exogenous dependence. As a result, if dependence is observed in data, one can always consider the system as having an endogenous dependence, regardless of the true underlying dependence mechanism. Because estimating the structure of an endogenous dependence is substantially easier than estimating a joint service-patience distribution from censored data, our approach facilitates statistical estimations considerably. Funding: C. A. Wu received financial support from the Hong Kong Research Grant Council [Early Career Scheme, Project 26206419]. A. Bassamboo and O. Perry received partial financial support from the National Science Foundation [Grant CMMI 2006350]. 
    more » « less
  5. In consulting, finance, and other service industries, customers represent a revenue stream, and must be acquired and retained over time. In this paper, we study the resource allocation problem of a profit maximizing service firm that dynamically allocates its resources toward acquiring new clients and retaining unsatisfied existing ones. The interaction between acquisition and retention in our model is reflected in the cash constraint on total expected spending on acquisition and retention in each period. We formulate this problem as a dynamic program in which the firm makes decisions in both acquisition and retention after observing the current size of its customer base and receiving information about customers in danger of attrition, and we characterize the structure of the optimal acquisition and retention strategy. We show that when the firm's customer base size is relatively low, the firm should spend heavily on acquisition and try to retain every unhappy customer. However, as its customer base grows, the firm should gradually shift its emphasis from acquisition to retention, and it should also aim to strike a balance between acquisition and retention while spending its available resources. Finally, when the customer base is large enough, it may be optimal for the firm to begin spending less in both acquisition and retention. We also extend our analysis to situations where acquisition or retention success rate, as a function of resources allocation, is uncertain and show that the optimal acquisition and retention policy can be surprisingly complex. However, we develop an effective heuristic for that case. This paper aims to provide service managers some analytical principles and effective guidelines on resource allocation between these two significant activities based on their firm's customer base size.

     
    more » « less