skip to main content

This content will become publicly available on December 21, 2022

Title: Bacterial Approaches for Assembling Iron-Sulfur Proteins
ABSTRACT Building iron-sulfur (Fe-S) clusters and assembling Fe-S proteins are essential actions for life on Earth. The three processes that sustain life, photosynthesis, nitrogen fixation, and respiration, require Fe-S proteins. Genes coding for Fe-S proteins can be found in nearly every sequenced genome. Fe-S proteins have a wide variety of functions, and therefore, defective assembly of Fe-S proteins results in cell death or global metabolic defects. Compared to alternative essential cellular processes, there is less known about Fe-S cluster synthesis and Fe-S protein maturation. Moreover, new factors involved in Fe-S protein assembly continue to be discovered. These facts highlight the growing need to develop a deeper biological understanding of Fe-S cluster synthesis, holo-protein maturation, and Fe-S cluster repair. Here, we outline bacterial strategies used to assemble Fe-S proteins and the genetic regulation of these processes. We focus on recent and relevant findings and discuss future directions, including the proposal of using Fe-S protein assembly as an antipathogen target.
; ; ;
Yount, Jacob
Award ID(s):
Publication Date:
Journal Name:
Sponsoring Org:
National Science Foundation
More Like this
  1. Dos Santos, P.C. (Ed.)
    Biological iron-sulfur (Fe-S) clusters are essential protein prosthetic groups that promote a range of biochemical reactions. In vivo, these clusters are synthesized by specialized protein machineries involved in sulfur mobilization, cluster assembly, and cluster transfer to their target proteins. Cysteine desulfurases initiate the first step of sulfur activation and mobilization in cluster biosynthetic pathways. The reaction catalyzed by these enzymes involves the abstraction of sulfur from the amino acid l-cysteine, with concomitant formation of alanine. The presence and availability of a sulfur acceptor modulate the sulfurtransferase activity of this class of enzymes by altering their reaction profile and catalytic turnover rate. Herein, we describe two methods used to probe the reaction profile of cysteine desulfurases through quantification of alanine and sulfide production in these reactions.
  2. Reed, B H (Ed.)
    Abstract Protein components of the invertebrate occluding junction—known as the septate junction (SJ)—are required for morphogenetic developmental events during embryogenesis in Drosophila melanogaster. In order to determine whether SJ proteins are similarly required for morphogenesis during other developmental stages, we investigated the localization and requirement of four representative SJ proteins during oogenesis: Contactin, Macroglobulin complement-related, Neurexin IV, and Coracle. A number of morphogenetic processes occur during oogenesis, including egg elongation, formation of dorsal appendages, and border cell (BC) migration. We found that all four SJ proteins are expressed in egg chambers throughout oogenesis, with the highest and the most sustained levels in the follicular epithelium (FE). In the FE, SJ proteins localize along the lateral membrane during early and mid-oogenesis, but become enriched in an apical-lateral domain (the presumptive SJ) by stage 11. SJ protein relocalization requires the expression of other SJ proteins, as well as Rab5 and Rab11 like SJ biogenesis in the embryo. Knocking down the expression of these SJ proteins in follicle cells throughout oogenesis results in egg elongation defects and abnormal dorsal appendages. Similarly, reducing the expression of SJ genes in the BC cluster results in BC migration defects. Together, these results demonstrate an essential requirementmore »for SJ genes in morphogenesis during oogenesis, and suggest that SJ proteins may have conserved functions in epithelial morphogenesis across developmental stages.« less
  3. ABSTRACT The archaeal cytoplasmic membrane provides an anchor for many surface proteins. Recently, a novel membrane anchoring mechanism involving a peptidase, archaeosortase A (ArtA), and C-terminal lipid attachment of surface proteins was identified in the model archaeon Haloferax volcanii . ArtA is required for optimal cell growth and morphogenesis, and the S-layer glycoprotein (SLG), the sole component of the H. volcanii cell wall, is one of the targets for this anchoring mechanism. However, how exactly ArtA function and regulation control cell growth and morphogenesis is still elusive. Here, we report that archaeal homologs to the bacterial phosphatidylserine synthase (PssA) and phosphatidylserine decarboxylase (PssD) are involved in ArtA-dependent protein maturation. Haloferax volcanii strains lacking either HvPssA or HvPssD exhibited motility, growth, and morphological phenotypes similar to those of an Δ artA mutant. Moreover, we showed a loss of covalent lipid attachment to SLG in the Δ hvpssA mutant and that proteolytic cleavage of the ArtA substrate HVO_0405 was blocked in the Δ hvpssA and Δ hvpssD mutant strains. Strikingly, ArtA, HvPssA, and HvPssD green fluorescent protein (GFP) fusions colocalized to the midcell position of H. volcanii cells, strongly supporting that they are involved in the same pathway. Finally, we have shownmore »that the SLG is also recruited to the midcell before being secreted and lipid anchored at the cell outer surface. Collectively, our data suggest that haloarchaea use the midcell as the main surface processing hot spot for cell elongation, division, and shape determination. IMPORTANCE The subcellular organization of biochemical processes in space and time is still one of the most mysterious topics in archaeal cell biology. Despite the fact that haloarchaea largely rely on covalent lipid anchoring to coat the cell envelope, little is known about how cells coordinate de novo synthesis and about the insertion of this proteinaceous layer throughout the cell cycle. Here, we report the identification of two novel contributors to ArtA-dependent lipid-mediated protein anchoring to the cell surface, HvPssA and HvPssD. ArtA, HvPssA, and HvPssD, as well as SLG, showed midcell localization during growth and cytokinesis, indicating that haloarchaeal cells confine phospholipid processing in order to promote midcell elongation. Our findings have important implications for the biogenesis of the cell surface.« less
  4. Chang, Fred (Ed.)
    Primary cilia are important organizing centers that control diverse cellular processes. Apicomplexan parasites like Toxoplasma gondii have a specialized cilium-like structure called the conoid that organizes the secretory and invasion machinery critical for the parasites’ lifestyle. The proteins that initiate the biogenesis of this structure are largely unknown. We identified the Toxoplasma orthologue of the conserved kinase ERK7 as essential to conoid assembly. Parasites in which ERK7 has been depleted lose their conoids late during maturation and are immotile and thus unable to invade new host cells. This is the most severe phenotype to conoid biogenesis yet reported, and is made more striking by the fact that ERK7 is not a conoid protein, as it localizes just basal to the structure. ERK7 has been recently implicated in ciliogenesis in metazoan cells, and our data suggest that this kinase has an ancient and central role in regulating ciliogenesis throughout Eukaryota.
  5. Moreno, Silvia N. (Ed.)
    ABSTRACT During their parasitic life cycle, through sandflies and vertebrate hosts, Leishmania parasites confront strikingly different environments, including abrupt changes in pH and temperature, to which they must rapidly adapt. These adaptations include alterations in Leishmania gene expression, metabolism, and morphology, allowing them to thrive as promastigotes in the sandfly and as intracellular amastigotes in the vertebrate host. A critical aspect of Leishmania metabolic adaptation to these changes is maintenance of efficient mitochondrial function in the hostile vertebrate environment. Such functions, including generation of ATP, depend upon the expression of many mitochondrial proteins, including subunits of cytochrome c oxidase (COX). Significantly, under mammalian temperature conditions, expression of Leishmania major COX subunit IV (LmCOX4) and virulence are dependent upon two copies of LACK , a gene that encodes the ribosome-associated scaffold protein, LACK ( Leishmania ortholog of RACK1 [receptor for activated C kinase]). Targeted replacement of an endogenous LACK copy with a putative ribosome-binding motif-disrupted variant (LACK R34D35G36 →LACK D34D35E36 ) resulted in thermosensitive parasites that showed diminished LmCOX4 expression, mitochondrial fitness, and replication in macrophages. Surprisingly, despite these phenotypes, LACK D34D35E36 associated with monosomes and polysomes and showed no major impairment of global protein synthesis. Collectively, these data suggest thatmore »wild-type (WT) LACK orchestrates robust LmCOX4 expression and mitochondrial fitness to ensure parasite virulence, via optimized functional interactions with the ribosome. IMPORTANCE Leishmania parasites are trypanosomatid protozoans that persist in infected human hosts to cause a spectrum of pathologies, from cutaneous and mucocutaneous manifestations to visceral leishmaniasis caused by Leishmania donovani . The latter is usually fatal if not treated. Persistence of L. major in the mammalian host depends upon maintaining gene-regulatory programs to support essential parasite metabolic functions. These include expression and assembly of mitochondrial L. major cytochrome c oxidase (LmCOX) subunits, important for Leishmania ATP production. Significantly, under mammalian conditions, WT levels of LmCOX subunits require threshold levels of the Leishmania ribosome-associated scaffold protein, LACK. Unexpectedly, we find that although disruption of LACK’s putative ribosome-binding motif does not grossly perturb ribosome association or global protein synthesis, it nonetheless impairs COX subunit expression, mitochondrial function, and virulence. Our data indicate that the quality of LACK’s interaction with Leishmania ribosomes is critical for LmCOX subunit expression and parasite mitochondrial function in the mammalian host. Collectively, these findings validate LACK’s ribosomal interactions as a potential therapeutic target.« less