As we strive to establish a long-term presence in space, it is crucial to plan large-scale space missions and campaigns with future uncertainties in mind. However, integrated space mission planning, which simultaneously considers mission planning and spacecraft design, faces significant challenges when dealing with uncertainties; this problem is formulated as a stochastic mixed integer nonlinear program (MINLP), and solving it using the conventional method would be computationally prohibitive for realistic applications. Extending a deterministic decomposition method from our previous work, we propose a novel and computationally efficient approach for integrated space mission planning under uncertainty. The proposed method effectively combines the Alternating Direction Method of Multipliers (ADMM)-based decomposition framework from our previous work, robust optimization, and two-stage stochastic programming (TSSP).This hybrid approach first solves the integrated problem deterministically, assuming the worst scenario, to precompute the robust spacecraft design. Subsequently, the two-stage stochastic program is solved for mission planning, effectively transforming the problem into a more manageable mixed-integer linear program (MILP). This approach significantly reduces computational costs compared to the exact method, but may potentially miss solutions that the exact method might find. We examine this balance through a case study of staged infrastructure deployment on the lunar surface under future demand uncertainty. When comparing the proposed method with a fully coupled benchmark, the results indicate that our approach can achieve nearly identical objective values (no worse than 1% in solved problems) while drastically reducing computational costs.
more »
« less
Multidisciplinary Design Optimization Approach to Integrated Space Mission Planning and Spacecraft Design
Space mission planning and spacecraft design are tightly coupled and need to be considered together for optimal performance; however, this integrated optimization problem results in a large-scale Mixed-Integer Nonlinear Programming (MINLP) problem, which is challenging to solve. In response to this challenge, this paper proposes a new solution approach to this MINLP problem by iterative solving a set of coupled subproblems via the augmented Lagrangian coordination approach following the philosophy of Multi-disciplinary Design Optimization (MDO). The proposed approach leverages the unique structure of the problem that enables its decomposition into a set of coupled subproblems of different types: a Mixed-Integer Quadratic Programming (MIQP) subproblem for mission planning and one or more Nonlinear Programming (NLP) subproblem(s) for spacecraft design. Since specialized MIQP or NLP solvers can be applied to each subproblem, the proposed approach can efficiently solve the otherwise intractable integrated MINLP problem. An automatic and effective method to find an initial solution for this iterative approach is also proposed so that the optimization can be performed without the need for a user-defined initial guess. In the demonstration case study, a human lunar exploration mission sequence is optimized with a subsystem-level parametric spacecraft design model. Compared to the state-of-the-art method, the proposed formulation can obtain a better solution with a shorter computational time even without parallelization. For larger problems, the proposed solution approach can also be easily parallelizable and thus is expected to be further advantageous and scalable.
more »
« less
- Award ID(s):
- 1942559
- PAR ID:
- 10319105
- Date Published:
- Journal Name:
- ASCEND 2021
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper, we study the problem of joint power control and beamforming design for simultaneous wireless information and power transfer (SWIPT) in an amplify-and-forward (AF) based two-way relaying (TWR) network. The considered system model consists of two source nodes and a relay node. Two single-antenna source nodes receive information and energy simultaneously via power splitting (PS) from the signals sent by a multi-antenna relay node. Our objective is to maximize the weighted sum energy at the two source nodes subject to quality of service (QoS) constraints and the transmit power constraints. However, the joint optimization of the relay beamforming matrix, the source transmit power and PS ratio is intractable. To find a closed-form solution of the formulated problem, we decouple the primal problem into two subproblems. In the first problem, we intend to optimize the beamforming vectors for given transmit powers and PS ratio. In the second subproblem, we optimize the remaining parameters with obtained beamformers. It is worth noting that although the corresponding subproblem are nonconvex, the optimal solution of each subproblem can be found by using certain techniques. The iterative optimization algorithm finally converges. Simulation results verify the effectiveness of the proposed joint design.more » « less
-
The design of cyber-physical systems (CPSs) requires methods and tools that can efficiently reason about the interaction between discrete models, e.g., representing the behaviors of ``cyber'' components, and continuous models of physical processes. Boolean methods such as satisfiability (SAT) solving are successful in tackling large combinatorial search problems for the design and verification of hardware and software components. On the other hand, problems in control, communications, signal processing, and machine learning often rely on convex programming as a powerful solution engine. However, despite their strengths, neither approach would work in isolation for CPSs. In this paper, we present a new satisfiability modulo convex programming (SMC) framework that integrates SAT solving and convex optimization to efficiently reason about Boolean and convex constraints at the same time. We exploit the properties of a class of logic formulas over Boolean and nonlinear real predicates, termed monotone satisfiability modulo convex formulas, whose satisfiability can be checked via a finite number of convex programs. Following the lazy satisfiability modulo theory (SMT) paradigm, we develop a new decision procedure for monotone SMC formulas, which coordinates SAT solving and convex programming to provide a satisfying assignment or determine that the formula is unsatisfiable. A key step in our coordination scheme is the efficient generation of succinct infeasibility proofs for inconsistent constraints that can support conflict-driven learning and accelerate the search. We demonstrate our approach on different CPS design problems, including spacecraft docking mission control, robotic motion planning, and secure state estimation. We show that SMC can handle more complex problem instances than state-of-the-art alternative techniques based on SMT solving and mixed integer convex programming.more » « less
-
In this work, we study the optimal design of two-armed clinical trials to maximize the accuracy of parameter estimation in a statistical model, where the interaction between patient covariates and treatment are explicitly incorporated to enable precision medication decisions. Such a modeling extension leads to significant complexities for the produced optimization problems because they include optimization over design and covariates concurrently. We take a min-max optimization model and minimize (over design) the maximum (over population) variance of the estimated interaction effect between treatment and patient covariates. This results in a min-max bilevel mixed integer nonlinear programming problem, which is notably challenging to solve. To address this challenge, we introduce a surrogate optimization model by approximating the objective function, for which we propose two solution approaches. The first approach provides an exact solution based on reformulation and decomposition techniques. In the second approach, we provide a lower bound for the inner optimization problem and solve the outer optimization problem over the lower bound. We test our proposed algorithms with synthetic and real-world data sets and compare them with standard (re)randomization methods. Our numerical analysis suggests that the proposed approaches provide higher-quality solutions in terms of the variance of estimators and probability of correct selection. We also show the value of covariate information in precision medicine clinical trials by comparing our proposed approaches to an alternative optimal design approach that does not consider the interaction terms between covariates and treatment. Summary of Contribution: Precision medicine is the future of healthcare where treatment is prescribed based on each patient information. Designing precision medicine clinical trials, which are the cornerstone of precision medicine, is extremely challenging because sample size is limited and patient information may be multidimensional. This work proposes a novel approach to optimally estimate the treatment effect for each patient type in a two-armed clinical trial by reducing the largest variance of personalized treatment effect. We use several statistical and optimization techniques to produce efficient solution methodologies. Results have the potential to save countless lives by transforming the design and implementation of future clinical trials to ensure the right treatments for the right patients. Doing so will reduce patient risks and reduce costs in the healthcare system.more » « less
-
null (Ed.)This paper presents a data-driven algorithm to solve the problem of infinite-horizon linear quadratic regulation (LQR), for a class of discrete-time linear time-invariant systems subjected to state and control constraints. The problem is divided into a constrained finite-horizon LQR subproblem and an unconstrained infinite-horizon LQR subproblem, which can be solved directly from collected input/state data, separately. Under certain conditions, the combination of the solutions of the subproblems converges to the optimal solution of the original problem. The effectiveness of the proposed approach is validated by a numerical example.more » « less