skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: WiStress: Contactless Stress Monitoring Using Wireless Signals
Stress plays a critical role in our lives, impacting our productivity and our long-term physiological and psychological well-being. This has motivated the development of stress monitoring solutions to better understand stress, its impact on productivity and teamwork, and help users adapt their habits toward more sustainable stress levels. However, today's stress monitoring solutions remain obtrusive, requiring active user participation (e.g., self-reporting), interfering with people's daily activities, and often adding more burden to users looking to reduce their stress. In this paper, we introduce WiStress, the first system that can passively monitor a user's stress levels by relying on wireless signals. WiStress does not require users to actively provide input or to wear any devices on their bodies. It operates by transmitting ultra-low-power wireless signals and measuring their reflections off the user's body. WiStress introduces two key innovations. First, it presents the first machine learning network that can accurately and robustly extract heartbeat intervals (IBI's) from wireless reflections without constraints on a user's daily activities. Second, it introduces a stress classification framework that combines the extracted heartbeats with other wirelessly captured stress-related features in order to infer a subject's stress level. We built a prototype of WiStress and tested it on 22 different subjects across different environments in both stress-induced and free-living conditions. Our results demonstrate that WiStress has high accuracy (84%-95%) in inferring a person's stress level in a fully-automated way, paving the way for ubiquitous sensing systems that can monitor stress and provide feedback to improve productivity, health, and well-being.  more » « less
Award ID(s):
1844280
PAR ID:
10319378
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Volume:
5
Issue:
3
ISSN:
2474-9567
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Stress is one of the main causes that increase the risk of serious health problems. Recent wearable devices have been used to monitor stress levels via electrodermal activities on the skin. Although many biosensors provide adequate sensing performance, they still rely on uncomfortable, partially flexible systems with rigid electronics. These devices are mounted on either fingers or palms, which hinders a continuous signal monitoring. A fully‐integrated, stretchable, wireless skin‐conformal bioelectronic (referred to as “SKINTRONICS”) is introduced here that integrates soft, multi‐layered, nanomembrane sensors and electronics for continuous and portable stress monitoring in daily life. The all‐in‐one SKINTRONICS is ultrathin, highly soft, and lightweight, which overall offers an ergonomic and conformal lamination on the skin. Stretchable nanomembrane electrodes and a digital temperature sensor enable highly sensitive monitoring of galvanic skin response (GSR) and temperature. A set of comprehensive signal processing, computational modeling, and experimental study provides key aspects of device design, fabrication, and optimal placing location. Simultaneous comparison with two commercial stress monitors captures the enhanced performance of SKINTRONICS in long‐term wearability, minimal noise, and skin compatibility. In vivo demonstration of continuous stress monitoring in daily life reveals the unique capability of the soft device as a real‐world applicable stress monitor. 
    more » « less
  2. Unlike the younger population that uses wearables such as smartwatches for monitoring health on a daily basis, elderly people need assistance in the use of technology and interpreting the data obtained through these smart connected frameworks. The current monitoring systems are primarily designed to monitor the physiological signals on a daily basis. The aim of this proposed research, Easy-Assist, is to help older people to maintain their emotional well-being. This research is focused on developing a wearable affective framework, which can help in detecting the emotions of the user in addition to monitoring their physiological signals. The proposed framework can be used in an automated assisted living environment, where the user's emotional state can be balanced using a haptic-based emotional elicitation system after the user's emotion is recognized, detected and interpreted in real-time. The proposed framework is validated using a fall detection algorithm deployed in a custom-built watch wearable, built using off-the-shelf components and an emotion detection framework built using a single board computer. A dataset of 21700 samples acquired using the proposed framework yielded a maximum efficiency of 97.25%, 96 %, and 94 %, in classifying the state and emotion classes into Alert, Active and Normal classes respectively, using multi-class SVM model. The overall latency of the proposed research was in few orders of milli-seconds. 
    more » « less
  3. mmWave signals form a critical component of 5G and next-generation wireless networks, which are also being increasingly considered for sensing the environment around us to enable ubiquitous IoT applications. In this context, this paper leverages the properties of mmWave signals for tracking 3D finger motion for interactive IoT applications. While conventional vision-based solutions break down under poor lighting, occlusions, and also suffer from privacy concerns, mmWave signals work under typical occlusions and non-line-of-sight conditions, while being privacy-preserving. In contrast to prior works on mmWave sensing that focus on predefined gesture classification, this work performs continuous 3D finger motion tracking. Towards this end, we first observe via simulations and experiments that the small size of fingers coupled with specular reflections do not yield stable mmWave reflections. However, we make an interesting observation that focusing on the forearm instead of the fingers can provide stable reflections for 3D finger motion tracking. Muscles that activate the fingers extend through the forearm, whose motion manifests as vibrations on the forearm. By analyzing the variation in phases of reflected mmWave signals from the forearm, this paper designs mm4Arm, a system that tracks 3D finger motion. Nontrivial challenges arise due to the high dimensional search space, complex vibration patterns, diversity across users, hardware noise, etc. mm4Arm exploits anatomical constraints in finger motions and fuses them with machine learning architectures based on encoder-decoder and ResNets in enabling accurate tracking. A systematic performance evaluation with 10 users demonstrates a median error of 5.73° (location error of 4.07 mm) with robustness to multipath and natural variation in hand position/orientation. The accuracy is also consistent under non-line-of-sight conditions and clothing that might occlude the forearm. mm4Arm runs on smartphones with a latency of 19 ms and low energy overhead. 
    more » « less
  4. Precision Swine Farming has the potential to directly benefit swine health and industry profit by automatically monitoring the growth and health of pigs. We introduce the first system to use structural vibration to track animals and the first system for automated characterization of piglet group activities, including nursing, sleeping, and active times. PigSense uses physical knowledge of the structural vibration characteristics caused by pig-activity-induced load changes to recognize different behaviors of the sow and piglets. For our system to survive the harsh environment of the farrowing pen for three months, we designed simple, durable sensors for physical fault tolerance, then installed many of them, pooling their data to achieve algorithmic fault tolerance even when some do stop working. The key focus of this work was to create a robust system that can withstand challenging environments, has limited installation and maintenance requirements, and uses domain knowledge to precisely detect a variety of swine activities in noisy conditions while remaining flexible enough to adapt to future activities and applications. We provided an extensive analysis and evaluation of all-round swine activities and scenarios from our one-year field deployment across two pig farms in Thailand and the USA. To help assess the risk of crushing, farrowing sicknesses, and poor maternal behaviors, PigSense achieves an average of 97.8% and 94% for sow posture and motion monitoring, respectively, and an average of 96% and 71% for ingestion and excretion detection. To help farmers monitor piglet feeding, starvation, and illness, PigSense achieves an average of 87.7%, 89.4%, and 81.9% in predicting different levels of nursing, sleeping, and being active, respectively. In addition, we show that our monitoring of signal energy changes allows the prediction of farrowing in advance, as well as status tracking during the farrowing process and on the occasion of farrowing issues. Furthermore, PigSense also predicts the daily pattern and weight gain in the lactation cycle with 89% accuracy, a metric that can be used to monitor the piglets’ growth progress over the lactation cycle. 
    more » « less
  5. Mobile two-factor authentication (2FA) has become commonplace along with the popularity of mobile devices. Current mobile 2FA solutions all require some form of user effort which may seriously affect the experience of mobile users, especially senior citizens or those with disability such as visually impaired users. In this paper, we propose Proximity-Proof, a secure and usable mobile 2FA system without involving user interactions. Proximity-Proof automatically transmits a user's 2FA response via inaudible OFDM-modulated acoustic signals to the login browser. We propose a novel technique to extract individual speaker and microphone fingerprints of a mobile device to defend against the powerful man-in-the-middle (MiM) attack. In addition, Proximity-Proof explores two-way acoustic ranging to thwart the co-located attack. To the best of our knowledge, Proximity-Proof is the first mobile 2FA scheme resilient to the MiM and co-located attacks. We empirically analyze that Proximity-Proof is at least as secure as existing mobile 2FA solutions while being highly usable. We also prototype Proximity-Proof and confirm its high security, usability, and efficiency through comprehensive user experiments. 
    more » « less