skip to main content

Title: Sparse Linear Ensemble Systems and Structural Controllability
The paper introduces and solves a structural controllability problem for continuum ensembles of linear time-invariant systems. All the individual linear systems of an ensemble are sparse, governed by the same sparsity pattern. Controllability of an ensemble system is, by convention, the capability of using a common control input to simultaneously steer every individual systems in it. A sparsity pattern is structurally controllable if it admits a controllable linear ensemble system. A main contribution of the paper is to provide a graphical condition that is necessary and sufficient for a sparsity pattern to be structurally controllable. Like other structural problems, the property of being structural controllable is monotone. We provide a complete characterization of minimal sparsity patterns as well.
Authors:
Award ID(s):
2042360
Publication Date:
NSF-PAR ID:
10319635
Journal Name:
IEEE Transactions on Automatic Control
ISSN:
0018-9286
Sponsoring Org:
National Science Foundation
More Like this
  1. Mathematical theories and empirical evidence suggest that several complex natural and man-made systems are fragile: as their size increases, arbitrarily small and localized alterations of the system parameters may trigger system-wide failures. Examples are abundant, from perturbation of the population densities leading to extinction of species in ecological networks [1], to structural changes in metabolic networks preventing reactions [2], cascading failures in power networks [3], and the onset of epileptic seizures following alterations of structural connectivity among populations of neurons [4]. While fragility of these systems has long been recognized [5], convincing theories of why natural evolution or technological advancemore »has failed, or avoided, to enhance robustness in complex systems are still lacking. In this paper we propose a mechanistic explanation of this phenomenon. We show that a fundamental tradeoff exists between fragility of a complex network and its controllability degree, that is, the control energy needed to drive the network state to a desirable state. We provide analytical and numerical evidence that easily controllable networks are fragile, suggesting that natural and man-made systems can either be resilient to parameters perturbation or efficient to adapt their state in response to external excitations and controls.« less
  2. Systems composed of large ensembles of isolated or interacted dynamic units are prevalent in nature and engineered infrastructures. Linear ensemble systems are inarguably the simplest class of ensemble systems and have attracted intensive attention to control theorists and practionars in the past years. Comprehensive understanding of dynamic properties of such systems yet remains far-fetched and requires considerable knowledge and techniques beyond the reach of modern control theory. In this paper, we explore the classes of linear ensemble systems with system matrices that are not globally diagonalizable. In particular, we focus on analyzing their controllability properties under a Sobolev space settingmore »and develop conditions under which uniform controllability of such ensemble systems is equivalent to that of their diagonalizable counterparts. This development significantly facilitates controllability analysis for linear ensemble systems through examining diagonalized linear systems.« less
  3. In this paper, we investigate the problem of actuator selection for linear dynamical systems. We develop a framework to design a sparse actuator schedule for a given large-scale linear system with guaranteed performance bounds using deterministic polynomial-time and randomized approximately linear-time algorithms. First, we introduce systemic controllability metrics for linear dynamical systems that are monotone and homogeneous with respect to the controllability Gramian. We show that several popular and widely used optimization criteria in the literature belong to this class of controllability metrics. Our main result is to provide a polynomial-time actuator schedule that on average selects only a constantmore »number of actuators at each time step, independent of the dimension, to furnish a guaranteed approximation of the controllability metrics in comparison to when all actuators are in use. Our results naturally apply to the dual problem of sensor selection, in which we provide a guaranteed approximation to the observability Gramian. We illustrate the effectiveness of our theoretical findings via several numerical simulations using benchmark examples.« less
  4. Ensembles of climate model simulations are commonly used to separate externally forced climate change from internal climate variability. However, much of the information gained from running large ensembles is lost in traditional methods of data reduction such as linear trend analysis or large scale spatial averaging. This paper demonstrates a pattern recognition method (forced pattern filtering) that extracts patterns of externally forced climate change from large ensembles and identifies the forced climate response with up to 10 times fewer ensemble members than simple ensemble averaging. It is particularly effective at filtering out spatially coherent modes of internal variability (e.g., Elmore »Ni˜no, North Atlantic Oscillation), which would otherwise alias into estimates of regional responses to forcing. This method is used to identify forced climate responses within the 40-member Community Earth System Model (CESM) large ensemble, including an El-Ni˜no-like response to volcanic eruptions and forced trends in the North Atlantic Oscillation. The ensemble-based estimate of the forced response is used to test statistical methods for isolating the forced response from a single realization (i.e., individual ensemble members). Low-frequency pattern filtering is found to effectively identify the forced response within individual ensemble members and is applied to the HadCRUT4 reconstruction of observed temperatures, whereby it identifies slow components of observed temperature changes that are consistent with the expected effects of anthropogenic greenhouse gas and aerosol forcing.« less
  5. We consider the problem of controlling the dynamic state of each of a finite collection of targets distributed in physical space using a much smaller collection of mobile agents. Each agent can attend to no more than one target at a given time, thus agents must move between targets to control the collective state, implying that the states of each of the individual targets are only controlled intermittently. We assume that the state dynamics of each of the targets are given by a linear, timeinvariant, controllable system and develop conditions on the visiting schedules of the agents to ensure thatmore »the property of controllability is maintained in the face of the intermittent control. We then introduce constraints on the magnitude of the control input and a bounded disturbance into the target dynamics and develop a method to evaluate system performance under this scenario. Finally, we use this method to determine how the amount of time the agents spend at a given target before switching to the next in its sequence influences« less