skip to main content

Title: The Endeavour S-STEM Program: A Multi-College Collaboration to Increase Engagement and Retention in STEM
Background & Program Description: The link between student engagement and retention is well-established in the education literature. As a result, many colleges have developed first-year experience programs to engage students in early technical work and to promote community-building. However, many of these student success programs require participation in extracurricular activities, which require time outside of class. Yet time for extracurricular activities is a luxury that many students of low socioeconomic status (SES) cannot afford due to family or work obligations. The Scholarships in STEM (S-STEM) program, funded by the National Science Foundation, provides crucial financial support to high-achieving low-SES STEM students. The S-STEM scholarships give students the option to work less or not at all. The intended result is that students regain the time afforded to their more privileged peers, thereby also giving them the opportunity to more effectively engage with their institution, studies, and peers. The Endeavour Program is a two-year program that incorporates the S-STEM financial support into a multi-faceted and multi-college program in STEM designed to increase the level of student engagement in school. The scholars, who are recruited from three colleges, take classes together, work on hands-on team projects, attend professional and personal development events, participate in outreach more » events, and conduct research with faculty mentors. Over the course of the two-year program, four dimensions of student engagement (academic, behavioral, cognitive, and affective) are tracked to determine the appropriateness of using these engagement levels as predictors of success. Results: Two cohorts of 20 students were recruited in the fall of 2017 and in the fall of 2018. The first cohort completed the two-year program in the spring of 2020, and the second cohort began the second year of the program in the fall of 2020. No third cohort was recruited in 2020 due the Covid19 pandemic. The third and fourth cohorts will now enter the program in the fall of 2021 and the fall of 2022 respectively. Overall, the results of the Endeavour Program have been positive. The final retention outcome for the first cohort (the only cohort to complete the program thus far) was 85% (17/20). Retention for the second cohort is currently at 100% (20/20). Initial results show that the S-STEM scholars are performing academically as well as their peers who do not share the same risk factors. In addition, the number of completed hours is also on par with their peers. However, the most significant gains were observed in the qualitative data. Students expressed fears and anxieties about the high school to college transition and reported that the guidance provided and the community formed through the Endeavour Program alleviated many of those negative emotions. The full paper shows student engagement data obtained over time for the first and second cohorts as well as lessons learned and directions for future work. Also, examples of advising charts created in an engagement data dashboard show how the quantitative engagement data has been compiled and organized to show early warning signs for current and future cohorts. « less
Authors:
;
Award ID(s):
1742579
Publication Date:
NSF-PAR ID:
10320042
Journal Name:
2021 ASEE Virtual Annual Conference
Sponsoring Org:
National Science Foundation
More Like this
  1. Eastern Mennonite University received a 5-year S-STEM award for their STEM Scholars Engaging in Local Problems (SSELP) program. The goal of this place-based, interdisciplinary scholarship program is to increase the number of academically talented, low-income students who graduate in STEM fields and either pursue immediate employment in STEM careers or STEM-related service or continue their STEM education in graduate school. In 2018 and 2019, two cohorts of seven students were recruited to major in biology, chemistry, engineering, computer science, mathematics, or environmental science. A key part of recruitment involved on-campus interviews, during a February Scholarship Day, between STEM faculty and potential scholars. As the yield rate for the event is high (54-66%), the university has continued this practice, funding additional STEM scholarships. In order to retain and graduate the scholars in STEM fields, the SSELP faculty designed and carried out various projects and activities to support the students. The SSELP Scholars participated in a first-year STEM Career Practicum class, a one-credit course that connected students with regional STEM practitioners across a variety of fields. The scholars were supported by peer tutors embedded in STEM classes, and now many are tutors themselves. They participated in collaborative projects where the cohorts workedmore »to identify and solve a problem or need in their community. The SSELP scholars were supported by both faculty and peer mentors. Each scholarship recipient was matched with a faculty mentor in addition to an academic advisor. A faculty mentor was in a related STEM field but typically not teaching the student. Each scholar was matched with a peer mentor (junior or senior) in their intended major of study. In addition, community building activities were implemented to provide a significant framework for interaction within the cohort. To evaluate the progress of the SSELP program, multiple surveys were conducted. HERI/CIRP Freshman Survey was used in the fall of 2018 for the first cohort and 2019 for the second cohort. The survey indicated an upward shift in students’ perception of science and in making collaborative effort towards positive change. Preliminary data on the Science Motivation Questionnaire showed that the SSELP scholars began their university studies with lower averages than their non-SSELP STEM peers in almost every area of science motivation. After over three years of implementation of the NSF-funded STEM Scholars Engaging in Local Problems program, the recruitment effort has grown significantly in STEM fields in the university. Within the two cohorts, the most common majors were environmental science and engineering. While 100% of Cohorts 1 and 2 students were retained into the Fall semester of the second year, two students from Cohort 1 left the program between the third and fourth semesters of their studies. While one student from Cohort 2 had a leave of absence, they have returned to continue their studies. The support system formed among the SSELP scholars and between the scholars and faculty has benefited the students in both their academic achievement as well as their personal growth.« less
  2. In January 2020 East Carolina University (ECU) in partnership with Lenoir Community College (LCC), Pitt Community College (PCC), and Wayne Community College (WCC) was awarded an S-STEM Track 3 Grant (Grant number: 1930497). The purpose of this grant was to support low-income students at each partner institution, to research best practices in recruiting and retaining low-income students at both universities and community colleges, and to research how such programs influence the transfer outcomes from two-year to four-year schools. This grant provides scholarship support for two cohorts of students, one starting their engineering studies in Fall 2020 and the other starting their engineering studies in Fall 2021. Each cohort was to be comprised of 40 students including 20 students at ECU and 20 students divided among the three partnering community colleges. In addition to supporting student scholarships, this grant supported the establishment of new student support mechanisms and enhancement of existing support systems on each campus. This project involved the creation of a faculty mentoring program, designing a summer bridge program, establishing a textbook lending library, and enhancing activities for students in a living-learning community, expansion of university tutoring initiatives to allow access for community college students, and promoting a newmore »peer mentoring initiative. The program emphasizes career opportunities including promoting on-campus career fairs, promoting internship and co-op opportunities, and bringing in guest speakers from various industry partners. A goal of the program was to allow community college students to build relationships with university students and faculty so they can more easily assimilate into the student body at the university upon transfer. This paper presents the challenges presented to the project in the first year and the pivoting that occurred due the pandemic. Data is presented regarding recruitment of scholars in both cohorts and retention of scholars from year 1 to year 2.« less
  3. This research paper examines retaining traditionally underrepresented minorities (URM) in STEM fields. The retention of URM students in STEM fields is a current area of focus for engineering education research. After an extensive literature review and examination of best practices in retaining the targeted group, a cohort-based, professional development program with a summer bridge component was developed at a large land grant institution in the Mid-Atlantic region. One programmatic goal was to increase retention of underrepresented students in the engineering college which, ultimately, is expected to increase diversity in the engineering workforce. The program has a strong focus on cohort building, teamwork, mentorship, and developing an engineering identity. Students participate in a week-long summer bridge component prior to the start of their first semester. During their first year, students take a class as a cohort each semester, participate in an industrial site visit, and interact with faculty mentors. Since 2016 the program has been funded by a National Science Foundation S-STEM grant, which provides scholarships to eligible program participants. Scholarships start at $4,500 during year one, and are renewable for up to five years, with an incremental increase of $1000 annually for years one through four. Even with the professionalmore »development program providing support and scholarships alleviating the financial burden of higher education, students are still leaving engineering. The 2016-2017 cohort consisted of five scholarship recipients, of which three remained in engineering as of fall 2018, the beginning of their third year. The 2017-2018 cohort consisted of seven scholarship recipients, of which five remained in engineering as of fall 2018, their second year. While the numbers of this scholarship group are small, their retention rate is alarmingly below the engineering college retention rate. Why? This paper presents the results of additional investigations of the overall program cohorts (not only the scholarship recipients) and their non-program peers with the aim of determining predictors of retention in the targeted demographic. Student responses to three survey instruments: GRIT, MSLQ, and LAESE were analyzed to determine why students were leaving engineering, even though the program they participated in was strongly rooted in retention based literature. Student responses on program exit surveys were also analyzed to determine non-programmatic elements that may cause students to leave engineering. Results of this research is presented along with “lessons learned” and suggested actions to increase retention among the targeted population.« less
  4. POSTER. Presented at the Symposium (9/12/2019) Abstract: The Academy of Engineering Success (AcES) employs literature-based, best practices to support and retain underrepresented students in engineering through graduation with the ultimate goal of diversifying the engineering workforce. AcES was established in 2012 and has been supported via NSF S-STEM award number 1644119 since 2016. The 2016, 2017, and 2018 cohorts consist of 12, 20, and 22 students, respectively. Five S-STEM supported scholarships were awarded to the 2016 cohort, seven scholarships were awarded to students from the 2017 cohort, and six scholarships were awarded to students from the 2018 cohort. AcES students participate in a one-week summer bridge experience, a common fall semester course focused on professional development, and a common spring semester course emphasizing the role of engineers in societal development. Starting with the summer bridge experience, and continuing until graduation, students are immersed in curricular and co-curricular activities with the goals of fostering feelings of institutional inclusion and belonging in engineering, providing academic support and student success skills, and professional development. The aforementioned goals are achieved by providing (1) opportunities for faculty-student, student-student, and industry mentor-student interaction, (2) academic support, and student success education in areas such as time managementmore »and study skills, and (3) facilitated career and major exploration. Four research questions are being examined, (1) What is the relationship between participation in the AcES program and participants’ academic success?, (2) What aspects of the AcES program most significantly impact participants’ success in engineering, (3) How do AcES students seek to overcome challenges in studying engineering, and (4) What is the longitudinal impact of the AcES program in terms of motivation, perceptions, feelings of inclusion, outcome expectations of the participants and retention? Students enrolled in the AcES program participate in the GRIT, LAESE, and MSLQ surveys, focus groups, and one-on-one interviews at the start and end of each fall semester and at the end of the spring semester. The surveys provide a measure of students’ GRIT, general self-efficacy, engineering self-efficacy, test anxiety, math outcome efficacy, intrinsic value of learning, inclusion, career expectations, and coping efficacy. Focus group and interview responses are analyzed in order to answer research questions 2, 3, and 4. Survey responses are analyzed to answer research question 4, and institutional data such as GPA is used to answer research question 1. An analysis of the 2017 AcES cohort survey responses produced a surprising result. When the responses of AcES students who retained were compared to the responses of AcES students who left engineering, those who left engineering had higher baseline values of GRIT, career expectations, engineering self-efficacy, and math outcome efficacy than those students who retained. A preliminary analysis of the 2016, 2017, and 2018 focus group and one-on-one interview responses indicates that the Engineering Learning Center, tutors, organized out of class experiences, first-year seminar, the AcES cohort, the AcES summer bridge, the AcES program, AcES Faculty/Staff, AcES guest lecturers, and FEP faculty/Staff are viewed as valuable by students and cited with contributing to their success in engineering. It is also evident that AcES students seek help from peers, seek help from tutors, use online resources, and attend office hours to overcome their challenges in studying engineering.« less
  5. In January 2020, an S-STEM grant (Grant #1930497) was awarded to East Carolina University (Greenville, NC) in partnership with three local community colleges. The community college partners were selected to participate in this program based upon their geographic proximity to the university and their offering an Associate’s in Engineering degree program. The purpose of this program was to support low-income students through scholarships and programming designed to help the community college students feel welcomed and part of the engineering program at the university before they transfer to the university. The project intended to recruit 80 total scholars in two cohorts of 40. Each cohort was to be comprised of 20 university students and 20 community college students. In-person recruiting events were planned in the service areas of each of the community colleges and in a 10-county region surrounding the university. The original plan for programming was to offer special events and speakers on each campus throughout the academic year so that all of the scholars could meet each other and learn more about the engineering profession. When events were held on the university campus, the goal was to showcase the laboratories and programs available once students complete their associate’s degreemore »and transfer and for them to begin developing relationships with the engineering faculty at the university. When events were held on the community college campuses, the goal was for the university students to learn more about the engineering programs at each of the community colleges and to develop relationships with the community college students. The global pandemic required significant pivoting from the original plan for activities and recruitment of students. This paper outlines the recruitment and retention of S-STEM scholars at the three partnering community colleges. In particular, this paper will discuss the three very different approaches each community college took to offering classes and activities on campus during the Covid-19 pandemic and how that impacted course offerings and program implementation. This works in progress paper outlines the activities done to this point in the project and the plans for future years.« less