A<sc>bstract</sc> The requirement that particles propagate causally on non-trivial backgrounds implies interesting constraints on higher-derivative operators. This work is part of a systematic study of the positivity bounds derivable from time delays on shockwave backgrounds. First, we discuss shockwaves in field theory, which are infinitely boosted Coulomb-like field configurations. We show how a positive time delay implies positivity of four-derivative operators in scalar field theory and electromagnetism, consistent with the results derived using dispersion relations, and we comment on how additional higher-derivative operators could be included. We then turn to gravitational shockwave backgrounds. We compute the infinite boost limit of Reissner-Nordström black holes to derive charged shockwave backgrounds. We consider photons traveling on these backgrounds and interacting through four-derivative corrections to Einstein-Maxwell theory. The inclusion of gravity introduces a logarithmic term into the time delay that interferes with the straightforward bounds derivable in pure field theory, a fact consistent with CEMZ and with recent results from dispersion relations. We discuss two ways to extract a physically meaningful quantity from the logarithmic time delay — by introducing an IR cutoff, or by considering the derivative of the time delay — and comment on the bounds implied in each case. Finally, we review a number of additional shockwave backgrounds which might be of use in future applications, including spinning shockwaves, those in higher dimensions or with a cosmological constant, and shockwaves from boosted extended objects.
more »
« less
Mean Field Theories of Quantum Hall Liquids Justified: Variations on the Greiter Wilczek Theme
We present a field theoretic variant of the Wilczek - Greiter adiabatic approach to Quantum Hall liquids. Specifically, we define a Chern-Simons-Maxwell theory such that the flux-attachment mean field theory is exact in a certain limit. This permits a systematic way to justify a variety of useful approximate approaches to these problems as constituting the first term in a (still to be developed) systematic expansion about a solvable limit.
more »
« less
- Award ID(s):
- 2000987
- PAR ID:
- 10320096
- Date Published:
- Journal Name:
- Wilczek Volume
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A<sc>bstract</sc> For any unitary conformal field theory in two dimensions with the central chargec, we prove that, if there is a nontrivial primary operator whose conformal dimension ∆ vanishes in some limit on the conformal manifold, the Zamolodchikov distancetto the limit is infinite, the approach to this limit is exponential ∆ = exp(−αt+O(1)), and the decay rate obeys the universal boundsc−1/2≤α≤ 1. In the limit, we also find that an infinite tower of primary operators emerges without a gap above the vacuum and that the conformal field theory becomes locally a tensor product of a sigma-model in the large radius limit and a compact theory. As a corollary, we establish a part of the Distance Conjecture about gravitational theories in three-dimensional anti-de Sitter space. In particular, our bounds onαindicate that the emergence of exponentially light states is inevitable as the moduli field corresponding totrolls beyond the Planck scale along the steepest path and that this phenomenon can begin already at the curvature scale of the bulk geometry. We also comment on implications of our bounds for gravity in asymptotically flat spacetime by taking the flat space limit and compare with the Sharpened Distance Conjecture.more » « less
-
Abstract We discuss some basic aspects of effective field theory applied to supergravity theories which arise in the low‐energy limit of string theory. Our discussion is particularly relevant to the effective field theories of no‐scale supergravities that break supersymmetry, including those that appear in constructing de Sitter solutions of string theory.more » « less
-
Abstract In 2011 Blanchet and Marsat suggested a fully relativistic version of Milgrom's modified Newtonian dynamics in which the dynamical degrees of freedom consist of the spacetime metric and a foliation of spacetime, the khronon field. This theory is simpler than the alternative relativistic formulations. We show that the theory has a consistent nonrelativistic or slow-motion limit. Blanchet and Marsat showed that in the slow motion limit, the theory reproduces stationary solutions of modified Newtonian dynamics. We show that these solutions are stable to khronon perturbations in the low acceleration regime, for the cases of spherical, cylindrical, and planar symmetry. For nonstationary systems in the low acceleration regime, we show that the khronon field generally gives an order unity correction to the modified Newtonian dynamics. In particular, there will be an order unity correction to the MOND version of Kepler's third law, potentially relevant to ongoing efforts to test MOND using GAIA observations of wide binaries.more » « less
-
A<sc>bstract</sc> We use effective string theory to study mesons with large spinJin largeNcQCD as rotating open strings. In the first part of this work, we formulate a consistent effective field theory (EFT) for open spinning strings with light quarks. Our EFT provides a consistent treatment of the endpoints’ singularities that arise in the massless limit. We obtain results, in a systematic 1/Jexpansion, for the spectrum of the leading and daughter Regge trajectories. Interestingly, we find that the redshift factor associated with the quarks’ acceleration implies that the applicability regime of the EFT is narrower compared to that of static flux tubes. In the second part of this work, we discuss several extensions of phenomenological interests, including mesons with heavy quarks, the quarks’ spin and the daughter Regge trajectories associated with the worldsheet axion, a massive string mode identified in lattice simulations of 4dflux tubes. We compare our predictions with 4dQCD spectroscopy data, and suggest potentialstringyinterpretations of the observed mesons. We finally comment on the relation between the EFT spectrum and the Axionic String Ansatz, a recently proposed characterization of the spectrum of Yang-Mills glueballs.more » « less
An official website of the United States government

