Neotropical wood‐eating catfishes (family Loricariidae) can occur in diverse assemblages with multiple genera and species feeding on the same woody detritus. As such, they present an intriguing system in which to examine the influence of host species identity on the vertebrate gut microbiome as well as to determine the potential role of gut bacteria in wood digestion. We characterized the gut microbiome of two co‐occurring catfish genera and four species: Panaqolus albomaculatus , Panaqolus gnomus , Panaqolus nocturnus, and Panaque bathyphilus , as well as that of submerged wood on which they feed. The gut bacterial community did not significantly vary across three gut regions (proximal, mid, distal) for any catfish species, although interspecific variation in the gut microbiome was significant, with magnitude of interspecific difference generally reflecting host phylogenetic proximity. Further, the gut microbiome of each species was significantly different to that present on the submerged wood. Inferring the genomic potential of the gut microbiome revealed that the majority of wood digesting pathways were at best equivalent to and more often depleted or nonexistent within the catfish gut compared to the submerged wood, suggesting a minimal role for the gut microbiome in wood digestion. Rather, these fishes are more likely reliant on fiber degradation performed by microbes in the environment, with their gut microbiome determined more by host identity and phylogenetic history.
more »
« less
Feeding ecology and microbiome of the pteropod Limacina helicina antarctica
The pteropod (pelagic snail) Limacina helicina antarctica is a dominant grazer along the Western Antarctic Peninsula (WAP) and plays an important role in regional food web dynamics and biogeochemical cycling. For the first time, we examined the gut microbiome and feeding ecology of L. h. antarctica based on 16S and 18S rRNA gene sequences of gut contents in the WAP during austral summer. Eukaryotic gut contents of L. h. antarctica indicate that this species predominantly feeds on diatoms and dinoflagellates, supplementing its diet with ciliates and foraminifera. Mollicutes bacteria were a consistent component of the gut microbiome. Determining the gut microbiome and feeding ecology of L. h. antarctica aids in identifying the underlying mechanisms controlling pteropod abundance and distribution in a region of rapid environmental change.
more »
« less
- Award ID(s):
- 2026045
- PAR ID:
- 10320128
- Date Published:
- Journal Name:
- Aquatic Microbial Ecology
- Volume:
- 88
- ISSN:
- 0948-3055
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Extensive research in well-studied animal models underscores the importance of commensal gastrointestinal (gut) microbes to animal physiology. Gut microbes have been shown to impact dietary digestion, mediate infection, and even modify behavior and cognition. Given the large physiological and pathophysiological contribution microbes provide their host, it is reasonable to assume that the vertebrate gut microbiome may also impact the fitness, health and ecology of wildlife. In accordance with this expectation, an increasing number of investigations have considered the role of the gut microbiome in wildlife ecology, health, and conservation. To help promote the development of this nascent field, we need to dissolve the technical barriers prohibitive to performing wildlife microbiome research. The present review discusses the 16S rRNA gene microbiome research landscape, clarifying best practices in microbiome data generation and analysis, with particular emphasis on unique situations that arise during wildlife investigations. Special consideration is given to topics relevant for microbiome wildlife research from sample collection to molecular techniques for data generation, to data analysis strategies. Our hope is that this article not only calls for greater integration of microbiome analyses into wildlife ecology and health studies but provides researchers with the technical framework needed to successfully conduct such investigations.more » « less
-
Suen, Garret (Ed.)ABSTRACT The gut microbiome is a symbiotic microbial community associated with the host and plays multiple important roles in host physiology, nutrition, and health. A number of factors have been shown to influence the gut microbiome, among which diet is considered to be one of the most important; however, the relationship between diet composition and gut microbiota in wild mammals is still not well recognized. Herein, we characterized the gut microbiota of bats and examined the effects of diet, host taxa, body size, gender, elevation, and latitude on the gut microbiota. The cytochrome C oxidase subunit I (COI) gene and 16S rRNA gene amplicons were sequenced from the feces of eight insectivorous bat species in southern China, includingMiniopterus fuliginosus,Aselliscus stoliczkanus,Myotis laniger,Rhinolophus episcopus,Rhinolophus osgoodi,Rhinolophus ferrumequinum,Rhinolophus affinis,andRhinolophus pusillus. The results showed that the composition of gut microbiome and diet exhibited significant differences among bat species. Diet composition and gut microbiota were significantly correlated at the order, family, genus, and operational taxonomic unit levels, while certain insects had a marked effect on the gut microbiome at specific taxonomic levels. In addition, elevation, latitude, body weight of bats, and host species had significant effects on the gut microbiome, but phylosymbiosis between host phylogeny and gut microbiome was lacking. These findings clarify the relationship between gut microbiome and diet and contribute to improving our understanding of host ecology and the evolution of the gut microbiome in wild mammals. IMPORTANCEThe gut microbiome is critical for the adaptation of wildlife to the dynamic environment. Bats are the second-largest group of mammals with short intestinal tract, yet their gut microbiome is still poorly studied. Herein, we explored the relationships between gut microbiome and food composition, host taxa, body size, gender, elevation, and latitude. We found a significant association between diet composition and gut microbiome in insectivorous bats, with certain insect species having major impacts on gut microbiome. Factors like species taxa, body weight, elevation, and latitude also affected the gut microbiome, but we failed to detect phylosymbiosis between the host phylogeny and the gut microbiome. Overall, our study presents novel insights into how multiple factors shape the bat’s gut microbiome together and provides a study case on host-microbe interactions in wildlife.more » « less
-
Abstract Ingestion of microplastics (MP) by suspension‐feeding bivalves has been well‐documented. However, it is unclear whether exposure to MP could damage the stomach and digestive gland (gut) of these animals, causing ramifications for organism and ecosystem health. Here, we show no apparent effects of nylon microfiber (MF) ingestion on the gut microbiome or digestive tissues of the blue mussel,Mytilus edulis. We exposed mussels to two low concentrations (50 and 100 particles/L) of either nylon MF orSpartinaspp. particles (dried, ground marsh grass), ca. 250–500 μm in length, or a no particle control laboratory treatment for 21 days. Results showed that nylon MF, when aged in coarsely filtered seawater, developed a different microbial community thanSpartinaspp. particles and seawater, however, even after exposure to this different community, mussel gut microbial communities resisted disturbance from nylon MF. The microbial communities of experimental mussels clustered together in ordination and were similar in taxonomic composition and measures of alpha diversity. Additionally, there was no evidence of damage to gut tissues after ingestion of nylon MF orSpartinaspp. Post‐ingestive particle processing likely mediated a short gut retention time of these relatively large particles, contributing to the negligible treatment effects.more » « less
-
Rudi, Knut (Ed.)ABSTRACT Many animals contain a species-rich and diverse gut microbiota that likely contributes to several host-supportive services that include diet processing and nutrient provisioning. Loss of microbiome taxa and their associated metabolic functions as result of perturbations may result in loss of microbiome-level services and reduction of metabolic capacity. If metabolic functions are shared by multiple taxa (i.e., functional redundancy), including deeply divergent lineages, then the impact of taxon/function losses may be dampened. We examined to what degree alterations in phylotype diversity impact microbiome-level metabolic capacity. Feeding two nutritionally imbalanced diets to omnivorousPeriplaneta americanaover 8 weeks reduced the diversity of their phylotype-rich gut microbiomes by ~25% based on 16S rRNA gene amplicon sequencing, yet PICRUSt2-inferred metabolic pathway richness was largely unaffected due to their being polyphyletic. We concluded that the nonlinearity between taxon and metabolic functional losses is due to microbiome members sharing many well-characterized metabolic functions, with lineages remaining after perturbation potentially being capable of preventing microbiome “service outages” due to functional redundancy. IMPORTANCEDiet can affect gut microbiome taxonomic composition and diversity, but its impacts on community-level functional capabilities are less clear. Host health and fitness are increasingly being linked to microbiome composition and further modeling of the relationship between microbiome taxonomic and metabolic functional capability is needed to inform these linkages. Invertebrate animal models like the omnivorous American cockroach are ideal for this inquiry because they are amenable to various diets and provide high replicates per treatment at low costs and thus enabling rigorous statistical analyses and hypothesis testing. Microbiome taxonomic composition is diet-labile and diversity was reduced after feeding on unbalanced diets (i.e., post-treatment), but the predicted functional capacities of the post-treatment microbiomes were less affected likely due to the resilience of several abundant taxa surviving the perturbation as well as many metabolic functions being shared by several taxa. These results suggest that both taxonomic and functional profiles should be considered when attempting to infer how perturbations are altering gut microbiome services and possible host outcomes.more » « less
An official website of the United States government

