skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nitrogen plasma passivated niobium resonators for superconducting quantum circuits
Microwave loss in niobium metallic structures used for superconducting quantum circuits is limited by a native surface oxide layer formed over a timescale of minutes when exposed to an ambient environment. In this work, we show that nitrogen plasma treatment forms a niobium nitride layer at the metal–air interface, which prevents such oxidation. X-ray photoelectron spectroscopy confirms the doping of nitrogen more than 5 nm into the surface and a suppressed oxygen presence. This passivation remains stable after aging for 15 days in an ambient environment. Cryogenic microwave characterization shows an average filling-factor-adjusted two-level-system loss tangent [Formula: see text] of [Formula: see text] for resonators with a 3 [Formula: see text]m center strip and [Formula: see text] for a 20 [Formula: see text]m center strip, exceeding the performance of unpassivated samples by a factor of four.  more » « less
Award ID(s):
1752844
PAR ID:
10320241
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Applied Physics Letters
Volume:
120
Issue:
10
ISSN:
0003-6951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Magneto-intersubband resistance oscillations (MISOs) of highly mobile 2D electrons in symmetric GaAs quantum wells with two populated subbands are studied in magnetic fields [Formula: see text] tilted from the normal to the 2D electron layer at different temperatures [Formula: see text]. The in-plane component ([Formula: see text]) of the field [Formula: see text] induces magnetic entanglement between subbands, leading to beating in oscillating density of states (DOS) and to MISO suppression. Model of the MISO suppression is proposed. Within the model, a comparison of MISO amplitude in the entangled and disentangled ([Formula: see text]) 2D systems yields both difference frequency of DOS oscillations, [Formula: see text], and strength of the electron–electron interaction, described by parameter [Formula: see text], in the 2D system. These properties are analyzed using two methods, yielding consistent but not identical results for both [Formula: see text] and [Formula: see text]. The analysis reveals an additional angular dependent factor of MISO suppression. The factor is related to spin splitting of quantum levels in magnetic fields. 
    more » « less
  2. Helium atom scattering and density-functional theory (DFT) are used to characterize the phonon band structure of the (3 × 1)-O surface reconstruction of Nb(100). Innovative DFT calculations comparing surface phonons of bare Nb(100) to those of the oxide surface show increased resonances for the oxide, especially at higher energies. Calculated dispersion curves align well with experimental results and yield atomic displacements to characterize polarizations. Inelastic helium time-of-flight measurements show phonons with mixed longitudinal and shear-vertical displacements along both the ⟨[Formula: see text]⟩, [Formula: see text] and ⟨[Formula: see text]⟩, [Formula: see text] symmetry axes over the entire first surface Brillouin zone. Force constants calculated for bulk Nb, Nb(100), and the (3 × 1)-O Nb(100) reconstruction indicate much stronger responses from the oxide surface, particularly for the top few layers of niobium and oxygen atoms. Many of the strengthened bonds at the surface create the characteristic ladder structure, which passivates and stabilizes the surface. These results represent, to our knowledge, the first phonon dispersion data for the oxide surface and the first ab initio calculation of the oxide’s surface phonons. This study supplies critical information for the further development of advanced materials for superconducting radiofrequency cavities. 
    more » « less
  3. We develop a new 3D ambient noise tomography (3D ANT) method for geotechnical site characterization. It requires recording ambient noise fields using a 2D surface array of geophones, from which experimental crosscorrelation functions (CCFs) are then extracted and directly inverted to obtain an S-wave velocity ([Formula: see text]) structure. The method consists of a forward simulation using 3D P-SV elastic wave equations to compute the synthetic CCF and an adjoint-state inversion to match the synthetic CCFs to the experimental CCFs for extraction of [Formula: see text]. The main advantage of the presented method, as compared with conventional passive-source seismic methods using characteristics of Green’s function (GF), is that it does not require equal energy on both sides of each receiver pair or far-field wavefields to retrieve the true GF. Instead, the source power spectrum density is inverted during the analysis and incorporated into the forward simulation of the synthetic CCFs to account for source energy distribution. After testing on synthetic data, the 3D ANT method is applied to 3 h of ambient noise recordings at the Garner Valley Downhole Array (GVDA) site in California, using a surface array of 196 geophones placed on a 14 × 14 grid with 5 m spacing. The inverted 3D [Formula: see text] model is found to be consistent with previous invasive and noninvasive geotechnical characterization efforts at the GVDA site. 
    more » « less
  4. It was previously shown by the first author that every knot in [Formula: see text] is ambient isotopic to one component of a two-component, alternating, hyperbolic link. In this paper, we define the alternating volume of a knot [Formula: see text] to be the minimum volume of any link [Formula: see text] in a natural class of alternating, hyperbolic links such that [Formula: see text] is ambient isotopic to a component of [Formula: see text]. Our main result shows that the alternating volume of a knot is coarsely equivalent to the twist number of a knot. 
    more » « less
  5. Abstract Surface properties are critical to the capabilities of superconducting microwave devices. The native oxide of niobium-based devices is thought to consist of a thin normal conducting layer. To improve understanding on the importance of this layer, an attempt was made to replace it with a more easily controlled gold film. A niobium sample host microwave cavity was used to measure the surface resistance in continuous wave operation at 4.0 GHz and 5.2 GHz . Sample conditions studied include temperatures ranging from 1.6 K to 4.2 K with RF magnetic fields on the sample surface ranging from 1 mT to the maximum field before the superconducting properties were lost (quench field). The nominal film thickness of the gold layer was increased from 0.1 nm to 2.0 nm in five steps to study the impact of the normal layer thickness on surface resistance on a single niobium substrate. The 0.1 nm film was found to reduce the surface resistance of the sample and to enhance the quench field. With the exception of the final step from a 1.5 nm gold film to 2.0 nm , the magnitude of the surface resistance increased substantially with gold film thickness. The nature of the surface resistance field-dependence appeared to be roughly independent from the gold layer thickness. This initial study provides new perspectives and suggests avenues for optimizing and designing surfaces for resonant cavities in particle accelerators and quantum information applications. 
    more » « less