This article shows that for a large class of discrete periodic Schrödinger operators, most wavefunctions resemble Bloch states. More precisely, we prove quantum ergodicity for a family of periodic Schrödinger operators H on periodic graphs. This means that most eigenfunctions of H on large finite periodic graphs are equidistributed in some sense, hence delocalized. Our results cover the adjacency matrix on Z^d, the triangular lattice, the honeycomb lattice, Cartesian products, and periodic Schrödinger operators on Z^d. The theorem applies more generally to any periodic Schrödinger operator satisfying an assumption on the Floquet eigenvalues.
more »
« less
Ambarzumian-type Problems for Discrete Schrödinger Operators
Abstract We discuss the problem of unique determination of the finite free discrete Schrödinger operator from its spectrum, also known as the Ambarzumian problem, with various boundary conditions, namely any real constant boundary condition at zero and Floquet boundary conditions of any angle. Then we prove the following Ambarzumian-type mixed inverse spectral problem: diagonal entries except the first and second ones and a set of two consecutive eigenvalues uniquely determine the finite free discrete Schrödinger operator.
more »
« less
- PAR ID:
- 10320370
- Date Published:
- Journal Name:
- Complex Analysis and Operator Theory
- Volume:
- 15
- Issue:
- 8
- ISSN:
- 1661-8254
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)We study a discrete dynamical Schrödinger bridge problem (SBP) as a dynamical variational problem on a finite graph. We prove that the discrete SBP exists a unique minimizer, which satisfies a boundary value Hamiltonian flow on probability simplex equipped with L2-Wasserstein metric. In our formulation, we establish the connection between discrete SBP problems and Hamiltonian flows.more » « less
-
Abstract We study discrete magnetic random Schrödinger operators on the square and honeycomb lattice. For the non-random magnetic operator on the hexagonal lattice with any rational magnetic flux, we show that the middle two dispersion surfaces exhibit Dirac cones. We then derive an asymptotic expansion for the density of states on the honeycomb lattice for oscillations of arbitrary rational magnetic flux. This allows us, as a corollary, to rigorously study the quantum Hall effect and conclude dynamical delocalization close to the conical point under disorder. We obtain similar results for the discrete random Schrödinger operator on the $$\mathbb Z^2$$-lattice with weak magnetic fields, close to the bottom and top of its spectrum.more » « less
-
Abstract In this paper, we consider discrete Schrödinger operators of the form, $$\begin{equation*} (Hu)(n) = u({n+1})+u({n-1})+V(n)u(n). \end{equation*}$$We view $$H$$ as a perturbation of the free operator $$H_0$$, where $$(H_0u)(n)= u({n+1})+u({n-1})$$. For $$H_0$$ (no perturbation), $$\sigma _{\textrm{ess}}(H_0)=\sigma _{\textrm{ac}}(H)=[-2,2]$$ and $$H_0$$ does not have eigenvalues embedded into $(-2,2)$. It is an interesting and important problem to identify the perturbation such that the operator $$H_0+V$$ has one eigenvalue (finitely many eigenvalues or countable eigenvalues) embedded into $(-2,2)$. We introduce the almost sign type potentials and develop the Prüfer transformation to address this problem, which leads to the following five results. 1: We obtain the sharp spectral transition for the existence of irrational type eigenvalues or rational type eigenvalues with even denominators.2: Suppose $$\limsup _{n\to \infty } n|V(n)|=a<\infty .$$ We obtain a lower/upper bound of $$a$$ such that $$H_0+V$$ has one rational type eigenvalue with odd denominator.3: We obtain the asymptotical behavior of embedded eigenvalues around the boundaries of $(-2,2)$.4: Given any finite set of points $$\{ E_j\}_{j=1}^N$$ in $(-2,2)$ with $$0\notin \{ E_j\}_{j=1}^N+\{ E_j\}_{j=1}^N$$, we construct the explicit potential $$V(n)=\frac{O(1)}{1+|n|}$$ such that $$H=H_0+V$$ has eigenvalues $$\{ E_j\}_{j=1}^N$$.5: Given any countable set of points $$\{ E_j\}$$ in $(-2,2)$ with $$0\notin \{ E_j\}+\{ E_j\}$$, and any function $h(n)>0$ going to infinity arbitrarily slowly, we construct the explicit potential $$|V(n)|\leq \frac{h(n)}{1+|n|}$$ such that $$H=H_0+V$$ has eigenvalues $$\{ E_j\}$$.more » « less
-
Abstract We present a mixed finite element method for approximating a fourth-order elliptic partial differential equation (PDE), the Kirchhoff plate equation, on a surface embedded in $${\mathbb {R}}^{3}$$, with or without boundary. Error estimates are given in mesh-dependent norms that account for the surface approximation and the approximation of the surface PDE. The method is built on the classic Hellan–Herrmann–Johnson method (for flat domains), and convergence is established for $$C^{k+1}$$ surfaces, with degree $$k$$ (Lagrangian, parametrically curved) approximation of the surface, for any $$k \geqslant 1$$. Mixed boundary conditions are allowed, including clamped, simply-supported and free conditions; if free conditions are present then the surface must be at least $$C^{2,1}$$. The framework uses tools from differential geometry and is directly related to the seminal work of Dziuk, G. (1988) Finite elements for the Beltrami operator on arbitrary surfaces. Partial Differential Equations and Calculus of Variations, vol. 1357 (S. Hildebrandt & R. Leis eds). Berlin, Heidelberg: Springer, pp. 142–155. for approximating the Laplace–Beltrami equation. The analysis here is the first to handle the full surface Hessian operator directly. Numerical examples are given on nontrivial surfaces that demonstrate our convergence estimates. In addition, we show how the surface biharmonic equation can be solved with this method.more » « less
An official website of the United States government

