We discuss the feasibility of measurement-based braiding in semiconductor-superconductor (SM-SC) heterostructures in the so-called quasi-Majorana regime—the topologically-trivial regime characterized by robust zero-bias conductance peaks (ZBCPs) that are due to partially-separated Andreev bound states (ps-ABSs). These low energy ABSs consist of component Majorana bound states (also called quasi-Majorana modes) that are spatially separated by a length scale smaller than the length of the system, in contrast with the Majorana zero modes (MZMs) emerging in the topological regime, which are separated by the length of the wire. In the quasi-Majorana regime, the ZBCPs appear to be robust to various perturbations as long as the energy splitting of the ps-ABS is less than the typical width Ew of the low-energy conductance peaks (Ew ∼ 10–20 μeV). However, the feasibility of measurement-based braiding depends on a different, much smaller, energy scale Em ∼ 0.1 μeV. This energy scale is given by the typical fermion parity-dependent ground state energy shift due to virtual electron transfer between the SM-SC system and a quantum dot used for parity measurements. In this paper we show that it is possible to prepare the SM-SC system in the quasi-Majorana regime with energy splittings below the Em threshold, so that measurement-based braiding is possible in principle. However, despite the apparent robustness of the corresponding ZBCPs, ps-ABSs are in reality topologically unprotected. Starting with ps-ABSs with energy below Em, we identify the maximum amplitudes of different types of (local) perturbations that are consistent with perturbation-induced energy splittings not exceeding the Em limit.We argue that measurements generating perturbations larger than the threshold amplitudes appropriate for Em cannot realize measurement-based braiding in SM-SC heterostructures in the quasi-Majorana regime. We find that, if possible at all, quantum computation using measurement-based braiding in the quasi-Majorana regime would be plagued with errors introduced by the measurement processes themselves, while such errors are significantly less likely in a scheme involving topological MZMs.
more »
« less
Symmetry-protected gates of Majorana qubits in a high-$T_c$ higher-order topological superconductor platform
We propose a platform for braiding Majorana non-Abelian anyons basedon a heterostructure between a d d -wavehigh- T_c T c superconductor and a quantum spin-Hall insulator. It has been recentlyshown that such a setup for a quantum spin-Hall insulator leads to apair of Majorana zero modes at each corner of the sample, and thus canbe regarded as a higher-order topological superconductor. We show thatupon applying a Zeeman field in the region, these Majorana modes splitin space and can be manipulated for braiding processes by tuning thefield and pairing phase. We show that such a setup can achieve fullbraiding, exchanging, and arbitrary phase gates (including the \pi/8 π / 8 magic gates) of the Majorana zero modes, all of which are robust andprotected by symmetries. As many of the ingredients of our proposedplatform have been realized in recent experiments, our results provide anew route toward universal topological quantum computation.
more »
« less
- PAR ID:
- 10320820
- Date Published:
- Journal Name:
- SciPost Physics
- Volume:
- 11
- Issue:
- 5
- ISSN:
- 2542-4653
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Novel many-body and topological electronic phases can be created in assemblies of interacting spins coupled to a superconductor, such as one-dimensional topological superconductors with Majorana zero modes (MZMs) at their ends. Understanding and controlling interactions between spins and the emergent band structure of the in-gap Yu–Shiba–Rusinov (YSR) states they induce in a superconductor are fundamental for engineering such phases. Here, by precisely positioning magnetic adatoms with a scanning tunneling microscope (STM), we demonstrate both the tunability of exchange interaction between spins and precise control of the hybridization of YSR states they induce on the surface of a bismuth (Bi) thin film that is made superconducting with the proximity effect. In this platform, depending on the separation of spins, the interplay among Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction, spin–orbit coupling, and surface magnetic anisotropy stabilizes different types of spin alignments. Using high-resolution STM spectroscopy at millikelvin temperatures, we probe these spin alignments through monitoring the spin-induced YSR states and their energy splitting. Such measurements also reveal a quantum phase transition between the ground states with different electron number parity for a pair of spins in a superconductor tuned by their separation. Experiments on larger assemblies show that spin–spin interactions can be mediated in a superconductor over long distances. Our results show that controlling hybridization of the YSR states in this platform provides the possibility of engineering the band structure of such states for creating topological phases.more » « less
-
A quantum anomalous Hall (QAH) insulator coupled to an s-wave superconductor is predicted to harbor chiral Majorana modes. A recent experiment interprets the half-quantized two-terminal conductance plateau as evidence for these modes in a millimeter-size QAH-niobium hybrid device. However, non-Majorana mechanisms can also generate similar signatures, especially in disordered samples. Here, we studied similar hybrid devices with a well-controlled and transparent interface between the superconductor and the QAH insulator. When the devices are in the QAH state with well-aligned magnetization, the two-terminal conductance is always half-quantized. Our experiment provides a comprehensive understanding of the superconducting proximity effect observed in QAH-superconductor hybrid devices and shows that the half-quantized conductance plateau is unlikely to be induced by chiral Majorana fermions in samples with a highly transparent interface.more » « less
-
The controlled tunability of superconductivity in low-dimensional materials may enable new quantum devices. Particularly in triplet or topological superconductors, tunneling devices such as Josephson junctions, etc., can demonstrate exotic functionalities. The tunnel barrier, an insulating or normal material layer separating two superconductors, is a key component for the junctions. Thin layers of NbSe2 have been shown as a superconductor with strong spin orbit coupling, which can give rise to topological superconductivity if driven by a large magnetic exchange field. Here we demonstrate the superconductor−insulator transitions in epitaxially grown few-layer NbSe2 with wafer-scale uniformity on insulating substrates. We provide the electrical transport, Raman spectroscopy, cross-sectional transmission electron microscopy, and X-ray diffraction characterizations of the insulating phase. We show that the superconductor−insulator transition is driven by strain, which also causes characteristic energy shifts of the Raman modes. Our observation paves the way for high-quality heterojunction tunnel barriers to be seamlessly built into epitaxial NbSe2 itself, thereby enabling highly scalable tunneling devices for superconductor-based quantum electronics.more » « less
-
The search for topological excitations such as Majorana fermions has spurred interest in the boundaries between distinct quan- tum states. Here, we explore an interface between two prototypical phases of electrons with conceptually different ground states: the integer quantum Hall insulator and the s-wave superconductor. We find clear signatures of hybridized electron and hole states similar to chiral Majorana fermions, which we refer to as chiral Andreev edge states (CAESs). These propagate along the interface in the direction determined by the magnetic field and their interference can turn an incoming electron into an out- going electron or hole, depending on the phase accumulated by the CAESs along their path. Our results demonstrate that these excitations can propagate and interfere over a significant length, opening future possibilities for their coherent manipulation.more » « less
An official website of the United States government

