skip to main content


Title: A New Deep Anomaly Detection-based Method for User Authentication Using Multi-Channel Surface EMG Signals of Hand Gestures
User authentication plays an important role in securing systems and devices by preventing unauthorized accesses. Although surface Electromyogram (sEMG) has been widely applied for human machine interface (HMI) applications, it has only seen a very limited use for user authentication. In this paper, we investigate the use of multi-channel sEMG signals of hand gestures for user authentication. We propose a new deep anomaly detection-based user authentication method which employs sEMG images generated from multi-channel sEMG signals. The deep anomaly detection model classifies the user performing the hand gesture as client or imposter by using sEMG images as the input. Different sEMG image generation methods are studied in this paper. The performance of the proposed method is evaluated with a high-density hand gesture sEMG (HD-sEMG) dataset and a sparse-density hand gesture sEMG (SD-sEMG) dataset under three authentication test scenarios. Among the sEMG image generation methods, root mean square (RMS) map achieves significantly better performance than others. The proposed method with RMS map also greatly outperforms the reference method, especially when using SD-sEMG signals. The results demonstrate the validity of the proposed method with RMS map for user authentication.  more » « less
Award ID(s):
1757207
NSF-PAR ID:
10320858
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Transactions on Instrumentation and Measurement
ISSN:
0018-9456
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. User authentication is an important security mechanism to prevent unauthorized accesses to systems or devices. In this paper, we propose a new user authentication method based on surface electromyogram (sEMG) images of hand gestures and deep anomaly detection. Multi-channel sEMG signals acquired during the user performing a hand gesture are converted into sEMG images which are used as the input of a deep anomaly detection model to classify the user as client or imposter. The performance of different sEMG image generation methods in three authentication test scenarios are investigated by using a public hand gesture sEMG dataset. Our experimental results demonstrate the viability of the proposed method for user authentication. 
    more » « less
  2. Recent studies have revealed that sensitive and private attributes could be decoded from sEMG signals, which incurs significant privacy threats to the users of sEMG applications. Most researches so far focus on improving the accuracy and reliability of sEMG models, but much less attention has been paid to their privacy. To fill this gap, this paper implemented and evaluated a framework to optimize the sEMG-based data-sharing mechanism. Our primary goal is to remove sensitive attributes in the sEMG features before sharing them with primary tasks while maintaining the data utility. We disentangled the identity-invariant task-relevant representations from original sEMG features. We shared it with the downstream pattern recognition tasks to reduce the chance of sensitive attributes being inferred by potential attackers. The proposed method was evaluated on data from twenty subjects, with training and testing data acquired 3-25 days apart. Experimental results show that the disentangled representations significantly lower the success rate of identity inference attacks compared to the original feature and its sparse representations generated by the state-of-the-art feature projection methods. Furthermore, the utility of the disentangled representation is also evaluated in hand gesture recognition tasks, showing superior performance over other methods. This work shows that disentangled representations of sEMG signals are a promising solution for privacy-reserving applications. 
    more » « less
  3. Pattern unlock is a popular screen unlock scheme that protects the sensitive data and information stored in mobile devices from unauthorized access. However, it is also susceptible to various attacks, including guessing attacks, shoulder surfing attacks, smudge attacks, and side-channel attacks, which can achieve a high success rate in breaking the patterns. In this paper, we propose a new two-factor screen unlock scheme that incorporates surface electromyography (sEMG)-based biometrics with patterns for user authentication. sEMG signals are unique biometric traits suitable for person identification, which can greatly improve the security of pattern unlock. During a screen unlock session, sEMG signals are recorded when the user draws the pattern on the device screen. Time-domain features extracted from the recorded sEMG signals are then used as the input of a one-class classifier to identify the user is legitimate or not. We conducted an experiment involving 10 subjects to test the effectiveness of the proposed scheme. It is shown that the adopted time-domain sEMG features and one-class classifiers achieve good authentication performance in terms of the F 1 score and Half of Total Error Rate (HTER). The results demonstrate that the proposed scheme is a promising solution to enhance the security of pattern unlock. 
    more » « less
  4. Obeid, I. ; Selesnick, I. (Ed.)
    The Neural Engineering Data Consortium at Temple University has been providing key data resources to support the development of deep learning technology for electroencephalography (EEG) applications [1-4] since 2012. We currently have over 1,700 subscribers to our resources and have been providing data, software and documentation from our web site [5] since 2012. In this poster, we introduce additions to our resources that have been developed within the past year to facilitate software development and big data machine learning research. Major resources released in 2019 include: ● Data: The most current release of our open source EEG data is v1.2.0 of TUH EEG and includes the addition of 3,874 sessions and 1,960 patients from mid-2015 through 2016. ● Software: We have recently released a package, PyStream, that demonstrates how to correctly read an EDF file and access samples of the signal. This software demonstrates how to properly decode channels based on their labels and how to implement montages. Most existing open source packages to read EDF files do not directly address the problem of channel labels [6]. ● Documentation: We have released two documents that describe our file formats and data representations: (1) electrodes and channels [6]: describes how to map channel labels to physical locations of the electrodes, and includes a description of every channel label appearing in the corpus; (2) annotation standards [7]: describes our annotation file format and how to decode the data structures used to represent the annotations. Additional significant updates to our resources include: ● NEDC TUH EEG Seizure (v1.6.0): This release includes the expansion of the training dataset from 4,597 files to 4,702. Calibration sequences have been manually annotated and added to our existing documentation. Numerous corrections were made to existing annotations based on user feedback. ● IBM TUSZ Pre-Processed Data (v1.0.0): A preprocessed version of the TUH Seizure Detection Corpus using two methods [8], both of which use an FFT sliding window approach (STFT). In the first method, FFT log magnitudes are used. In the second method, the FFT values are normalized across frequency buckets and correlation coefficients are calculated. The eigenvalues are calculated from this correlation matrix. The eigenvalues and correlation matrix's upper triangle are used to generate feature. ● NEDC TUH EEG Artifact Corpus (v1.0.0): This corpus was developed to support modeling of non-seizure signals for problems such as seizure detection. We have been using the data to build better background models. Five artifact events have been labeled: (1) eye movements (EYEM), (2) chewing (CHEW), (3) shivering (SHIV), (4) electrode pop, electrostatic artifacts, and lead artifacts (ELPP), and (5) muscle artifacts (MUSC). The data is cross-referenced to TUH EEG v1.1.0 so you can match patient numbers, sessions, etc. ● NEDC Eval EEG (v1.3.0): In this release of our standardized scoring software, the False Positive Rate (FPR) definition of the Time-Aligned Event Scoring (TAES) metric has been updated [9]. The standard definition is the number of false positives divided by the number of false positives plus the number of true negatives: #FP / (#FP + #TN). We also recently introduced the ability to download our data from an anonymous rsync server. The rsync command [10] effectively synchronizes both a remote directory and a local directory and copies the selected folder from the server to the desktop. It is available as part of most, if not all, Linux and Mac distributions (unfortunately, there is not an acceptable port of this command for Windows). To use the rsync command to download the content from our website, both a username and password are needed. An automated registration process on our website grants both. An example of a typical rsync command to access our data on our website is: rsync -auxv nedc_tuh_eeg@www.isip.piconepress.com:~/data/tuh_eeg/ Rsync is a more robust option for downloading data. We have also experimented with Google Drive and Dropbox, but these types of technology are not suitable for such large amounts of data. All of the resources described in this poster are open source and freely available at https://www.isip.piconepress.com/projects/tuh_eeg/downloads/. We will demonstrate how to access and utilize these resources during the poster presentation and collect community feedback on the most needed additions to enable significant advances in machine learning performance. 
    more » « less
  5. Obeid, Iyad Selesnick (Ed.)
    Electroencephalography (EEG) is a popular clinical monitoring tool used for diagnosing brain-related disorders such as epilepsy [1]. As monitoring EEGs in a critical-care setting is an expensive and tedious task, there is a great interest in developing real-time EEG monitoring tools to improve patient care quality and efficiency [2]. However, clinicians require automatic seizure detection tools that provide decisions with at least 75% sensitivity and less than 1 false alarm (FA) per 24 hours [3]. Some commercial tools recently claim to reach such performance levels, including the Olympic Brainz Monitor [4] and Persyst 14 [5]. In this abstract, we describe our efforts to transform a high-performance offline seizure detection system [3] into a low latency real-time or online seizure detection system. An overview of the system is shown in Figure 1. The main difference between an online versus offline system is that an online system should always be causal and has minimum latency which is often defined by domain experts. The offline system, shown in Figure 2, uses two phases of deep learning models with postprocessing [3]. The channel-based long short term memory (LSTM) model (Phase 1 or P1) processes linear frequency cepstral coefficients (LFCC) [6] features from each EEG channel separately. We use the hypotheses generated by the P1 model and create additional features that carry information about the detected events and their confidence. The P2 model uses these additional features and the LFCC features to learn the temporal and spatial aspects of the EEG signals using a hybrid convolutional neural network (CNN) and LSTM model. Finally, Phase 3 aggregates the results from both P1 and P2 before applying a final postprocessing step. The online system implements Phase 1 by taking advantage of the Linux piping mechanism, multithreading techniques, and multi-core processors. To convert Phase 1 into an online system, we divide the system into five major modules: signal preprocessor, feature extractor, event decoder, postprocessor, and visualizer. The system reads 0.1-second frames from each EEG channel and sends them to the feature extractor and the visualizer. The feature extractor generates LFCC features in real time from the streaming EEG signal. Next, the system computes seizure and background probabilities using a channel-based LSTM model and applies a postprocessor to aggregate the detected events across channels. The system then displays the EEG signal and the decisions simultaneously using a visualization module. The online system uses C++, Python, TensorFlow, and PyQtGraph in its implementation. The online system accepts streamed EEG data sampled at 250 Hz as input. The system begins processing the EEG signal by applying a TCP montage [8]. Depending on the type of the montage, the EEG signal can have either 22 or 20 channels. To enable the online operation, we send 0.1-second (25 samples) length frames from each channel of the streamed EEG signal to the feature extractor and the visualizer. Feature extraction is performed sequentially on each channel. The signal preprocessor writes the sample frames into two streams to facilitate these modules. In the first stream, the feature extractor receives the signals using stdin. In parallel, as a second stream, the visualizer shares a user-defined file with the signal preprocessor. This user-defined file holds raw signal information as a buffer for the visualizer. The signal preprocessor writes into the file while the visualizer reads from it. Reading and writing into the same file poses a challenge. The visualizer can start reading while the signal preprocessor is writing into it. To resolve this issue, we utilize a file locking mechanism in the signal preprocessor and visualizer. Each of the processes temporarily locks the file, performs its operation, releases the lock, and tries to obtain the lock after a waiting period. The file locking mechanism ensures that only one process can access the file by prohibiting other processes from reading or writing while one process is modifying the file [9]. The feature extractor uses circular buffers to save 0.3 seconds or 75 samples from each channel for extracting 0.2-second or 50-sample long center-aligned windows. The module generates 8 absolute LFCC features where the zeroth cepstral coefficient is replaced by a temporal domain energy term. For extracting the rest of the features, three pipelines are used. The differential energy feature is calculated in a 0.9-second absolute feature window with a frame size of 0.1 seconds. The difference between the maximum and minimum temporal energy terms is calculated in this range. Then, the first derivative or the delta features are calculated using another 0.9-second window. Finally, the second derivative or delta-delta features are calculated using a 0.3-second window [6]. The differential energy for the delta-delta features is not included. In total, we extract 26 features from the raw sample windows which add 1.1 seconds of delay to the system. We used the Temple University Hospital Seizure Database (TUSZ) v1.2.1 for developing the online system [10]. The statistics for this dataset are shown in Table 1. A channel-based LSTM model was trained using the features derived from the train set using the online feature extractor module. A window-based normalization technique was applied to those features. In the offline model, we scale features by normalizing using the maximum absolute value of a channel [11] before applying a sliding window approach. Since the online system has access to a limited amount of data, we normalize based on the observed window. The model uses the feature vectors with a frame size of 1 second and a window size of 7 seconds. We evaluated the model using the offline P1 postprocessor to determine the efficacy of the delayed features and the window-based normalization technique. As shown by the results of experiments 1 and 4 in Table 2, these changes give us a comparable performance to the offline model. The online event decoder module utilizes this trained model for computing probabilities for the seizure and background classes. These posteriors are then postprocessed to remove spurious detections. The online postprocessor receives and saves 8 seconds of class posteriors in a buffer for further processing. It applies multiple heuristic filters (e.g., probability threshold) to make an overall decision by combining events across the channels. These filters evaluate the average confidence, the duration of a seizure, and the channels where the seizures were observed. The postprocessor delivers the label and confidence to the visualizer. The visualizer starts to display the signal as soon as it gets access to the signal file, as shown in Figure 1 using the “Signal File” and “Visualizer” blocks. Once the visualizer receives the label and confidence for the latest epoch from the postprocessor, it overlays the decision and color codes that epoch. The visualizer uses red for seizure with the label SEIZ and green for the background class with the label BCKG. Once the streaming finishes, the system saves three files: a signal file in which the sample frames are saved in the order they were streamed, a time segmented event (TSE) file with the overall decisions and confidences, and a hypotheses (HYP) file that saves the label and confidence for each epoch. The user can plot the signal and decisions using the signal and HYP files with only the visualizer by enabling appropriate options. For comparing the performance of different stages of development, we used the test set of TUSZ v1.2.1 database. It contains 1015 EEG records of varying duration. The any-overlap performance [12] of the overall system shown in Figure 2 is 40.29% sensitivity with 5.77 FAs per 24 hours. For comparison, the previous state-of-the-art model developed on this database performed at 30.71% sensitivity with 6.77 FAs per 24 hours [3]. The individual performances of the deep learning phases are as follows: Phase 1’s (P1) performance is 39.46% sensitivity and 11.62 FAs per 24 hours, and Phase 2 detects seizures with 41.16% sensitivity and 11.69 FAs per 24 hours. We trained an LSTM model with the delayed features and the window-based normalization technique for developing the online system. Using the offline decoder and postprocessor, the model performed at 36.23% sensitivity with 9.52 FAs per 24 hours. The trained model was then evaluated with the online modules. The current performance of the overall online system is 45.80% sensitivity with 28.14 FAs per 24 hours. Table 2 summarizes the performances of these systems. The performance of the online system deviates from the offline P1 model because the online postprocessor fails to combine the events as the seizure probability fluctuates during an event. The modules in the online system add a total of 11.1 seconds of delay for processing each second of the data, as shown in Figure 3. In practice, we also count the time for loading the model and starting the visualizer block. When we consider these facts, the system consumes 15 seconds to display the first hypothesis. The system detects seizure onsets with an average latency of 15 seconds. Implementing an automatic seizure detection model in real time is not trivial. We used a variety of techniques such as the file locking mechanism, multithreading, circular buffers, real-time event decoding, and signal-decision plotting to realize the system. A video demonstrating the system is available at: https://www.isip.piconepress.com/projects/nsf_pfi_tt/resources/videos/realtime_eeg_analysis/v2.5.1/video_2.5.1.mp4. The final conference submission will include a more detailed analysis of the online performance of each module. ACKNOWLEDGMENTS Research reported in this publication was most recently supported by the National Science Foundation Partnership for Innovation award number IIP-1827565 and the Pennsylvania Commonwealth Universal Research Enhancement Program (PA CURE). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the official views of any of these organizations. REFERENCES [1] A. Craik, Y. He, and J. L. Contreras-Vidal, “Deep learning for electroencephalogram (EEG) classification tasks: a review,” J. Neural Eng., vol. 16, no. 3, p. 031001, 2019. https://doi.org/10.1088/1741-2552/ab0ab5. [2] A. C. Bridi, T. Q. Louro, and R. C. L. Da Silva, “Clinical Alarms in intensive care: implications of alarm fatigue for the safety of patients,” Rev. Lat. Am. Enfermagem, vol. 22, no. 6, p. 1034, 2014. https://doi.org/10.1590/0104-1169.3488.2513. [3] M. Golmohammadi, V. Shah, I. Obeid, and J. Picone, “Deep Learning Approaches for Automatic Seizure Detection from Scalp Electroencephalograms,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York, New York, USA: Springer, 2020, pp. 233–274. https://doi.org/10.1007/978-3-030-36844-9_8. [4] “CFM Olympic Brainz Monitor.” [Online]. Available: https://newborncare.natus.com/products-services/newborn-care-products/newborn-brain-injury/cfm-olympic-brainz-monitor. [Accessed: 17-Jul-2020]. [5] M. L. Scheuer, S. B. Wilson, A. Antony, G. Ghearing, A. Urban, and A. I. Bagic, “Seizure Detection: Interreader Agreement and Detection Algorithm Assessments Using a Large Dataset,” J. Clin. Neurophysiol., 2020. https://doi.org/10.1097/WNP.0000000000000709. [6] A. Harati, M. Golmohammadi, S. Lopez, I. Obeid, and J. Picone, “Improved EEG Event Classification Using Differential Energy,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium, 2015, pp. 1–4. https://doi.org/10.1109/SPMB.2015.7405421. [7] V. Shah, C. Campbell, I. Obeid, and J. Picone, “Improved Spatio-Temporal Modeling in Automated Seizure Detection using Channel-Dependent Posteriors,” Neurocomputing, 2021. [8] W. Tatum, A. Husain, S. Benbadis, and P. Kaplan, Handbook of EEG Interpretation. New York City, New York, USA: Demos Medical Publishing, 2007. [9] D. P. Bovet and C. Marco, Understanding the Linux Kernel, 3rd ed. O’Reilly Media, Inc., 2005. https://www.oreilly.com/library/view/understanding-the-linux/0596005652/. [10] V. Shah et al., “The Temple University Hospital Seizure Detection Corpus,” Front. Neuroinform., vol. 12, pp. 1–6, 2018. https://doi.org/10.3389/fninf.2018.00083. [11] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011. https://dl.acm.org/doi/10.5555/1953048.2078195. [12] J. Gotman, D. Flanagan, J. Zhang, and B. Rosenblatt, “Automatic seizure detection in the newborn: Methods and initial evaluation,” Electroencephalogr. Clin. Neurophysiol., vol. 103, no. 3, pp. 356–362, 1997. https://doi.org/10.1016/S0013-4694(97)00003-9. 
    more » « less