skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A multilayer network model of the coevolution of the spread of a disease and competing opinions
During the COVID-19 pandemic, conflicting opinions on physical distancing swept across social media, affecting both human behavior and the spread of COVID-19. Inspired by such phenomena, we construct a two-layer multiplex network for the coupled spread of a disease and conflicting opinions. We model each process as a contagion. On one layer, we consider the concurrent evolution of two opinions — pro-physical-distancing and anti-physical-distancing — that compete with each other and have mutual immunity to each other. The disease evolves on the other layer, and individuals are less likely (respectively, more likely) to become infected when they adopt the pro-physical-distancing (respectively, anti-physical-distancing) opinion. We develop approximations of mean-field type by generalizing monolayer pair approximations to multilayer networks; these approximations agree well with Monte Carlo simulations for a broad range of parameters and several network structures. Through numerical simulations, we illustrate the influence of opinion dynamics on the spread of the disease from complex interactions both between the two conflicting opinions and between the opinions and the disease. We find that lengthening the duration that individuals hold an opinion may help suppress disease transmission, and we demonstrate that increasing the cross-layer correlations or intra-layer correlations of node degrees may lead to fewer individuals becoming infected with the disease.  more » « less
Award ID(s):
2027438 1922952
PAR ID:
10321187
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Mathematical Models and Methods in Applied Sciences
Volume:
31
Issue:
12
ISSN:
0218-2025
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background: The health belief model suggests that individuals' beliefs affect behaviors associated with health. This study examined whether Ohioans' pre-existing medical health diagnoses affected their belief about personal health risk and their compliance with social distancing during the coronavirus disease 2019 (COVID-19) pandemic. Prior research examining physical and mental diagnoses and social distancing compliance is nearly nonexistent. We examined whether physical and mental health diagnoses influenced individuals' beliefs that their health is at risk and their adherence with social distancing guidelines. Methods: The study used longitudinal cohort data from the Toledo Adolescent Relationships Study (TARS) (n = 790), which surveyed Ohioans prior to and during the COVID-19 pandemic. Dependent variables included belief that an individual's own health was at risk and social distancing compliance. Independent variables included physical and mental health diagnoses, pandemic-related factors (fear of COVID-19, political beliefs about the pandemic, friends social distance, family social distance, COVID-19 exposure), and sociodemographic variables (age, gender, race/ethnicity, educational level). Results: Individuals who had a pre-existing physical health diagnosis were more likely to believe that their personal health was at risk during the pandemic but were not more likely to comply with social distancing guidelines. In contrast, individuals who had a pre-existing mental health diagnosis were more compliant with social distancing guidelines but were not more likely to believe their personal health was at risk. Individuals who expressed greater fear of COVID-19 believed their health is more at risk than those who expressed lower levels of fear. Conclusion: Health considerations are important to account for in assessments of responses to the pandemic, beliefs about personal health risk, and social distancing behavior. Additional research is needed to understand the divergence in the findings regarding physical health, beliefs about personal health risk, and social distancing compliance. Further, research is needed to understand how mental health issues impact decision-making related to social distancing compliance. 
    more » « less
  2. Physical distancing between individuals is key to preventing the spread of a disease such as COVID-19. On the one hand, having access to information about physical interactions is critical for decision makers; on the other, this information is sensitive and can be used to track individuals. In this work, we design Poirot, a system to collect aggregate statistics about physical interactions in a privacy-preserving manner. We show a preliminary evaluation of our system that demonstrates the scalability of our approach even while maintaining strong privacy guarantees. 
    more » « less
  3. The COVID-19 pandemic demonstrated the importance of social distancing practices to stem the spread of the virus. However, compliance with public health guidelines was mixed. Understanding what factors are associated with differences in compliance can improve public health messaging since messages could be targeted and tailored to different population segments. We utilize Twitter data on social mobility during COVID-19 to reveal which populations practiced social distancing and what factors correlated with this practice. We analyze correlations between demographic and political affiliation with reductions in physical mobility measured by public geolocation tweets. We find significant differences in mobility reduction between these groups in the United States. We observe that males, Asian and Latinx individuals, older individuals, Democrats, and people from higher population density states exhibited larger reductions in movement. Furthermore, our study also unveils meaningful insights into the interactions between different groups. We hope these findings will provide evidence to support public health policy-making. 
    more » « less
  4. Abstract Background The COVID-19 pandemic has caused more than 25 million cases and 800 thousand deaths worldwide to date. In early days of the pandemic, neither vaccines nor therapeutic drugs were available for this novel coronavirus. All measures to prevent the spread of COVID-19 are thus based on reducing contact between infected and susceptible individuals. Most of these measures such as quarantine and self-isolation require voluntary compliance by the population. However, humans may act in their (perceived) self-interest only. Methods We construct a mathematical model of COVID-19 transmission with quarantine and hospitalization coupled with a dynamic game model of adaptive human behavior. Susceptible and infected individuals adopt various behavioral strategies based on perceived prevalence and burden of the disease and sensitivity to isolation measures, and they evolve their strategies using a social learning algorithm (imitation dynamics). Results This results in complex interplay between the epidemiological model, which affects success of different strategies, and the game-theoretic behavioral model, which in turn affects the spread of the disease. We found that the second wave of the pandemic, which has been observed in the US, can be attributed to rational behavior of susceptible individuals, and that multiple waves of the pandemic are possible if the rate of social learning of infected individuals is sufficiently high. Conclusions To reduce the burden of the disease on the society, it is necessary to incentivize such altruistic behavior by infected individuals as voluntary self-isolation. 
    more » « less
  5. To ensure the safe operation of schools, workplaces, nursing homes, and other businesses during COVID-19 pandemic there is an urgent need to develop cost-effective public health strategies. Here we focus on the cruise industry which was hit early by the COVID-19 pandemic, with more than 40 cruise ships reporting COVID-19 infections. We apply mathematical modeling to assess the impact of testing strategies together with social distancing protocols on the spread of the novel coronavirus during ocean cruises using an individual-level stochastic model of the transmission dynamics of COVID-19. We model the contact network, the potential importation of cases arising during shore excursions, the temporal course of infectivity at the individual level, the effects of social distancing strategies, different testing scenarios characterized by the test’s sensitivity profile, and testing frequency. Our findings indicate that PCR testing at embarkation and daily testing of all individuals aboard, together with increased social distancing and other public health measures, should allow for rapid detection and isolation of COVID-19 infections and dramatically reducing the probability of onboard COVID-19 community spread. In contrast, relying only on PCR testing at embarkation would not be sufficient to avert outbreaks, even when implementing substantial levels of social distancing measures. 
    more » « less