skip to main content


Title: Intelligent science exhibits: Transforming hands-on exhibits into mixed-reality learning experiences
Museum exhibits encourage exploration with physical materials typically with minimal signage or guidance. Ideally children get interactive support as they explore, but it is not always feasible to have knowledgeable staff regularly present. Technology-based interactive support can provide guidance to help learners achieve scientific understanding for how and why things work and engineering skills for designing and constructing useful artifacts and for solving important problems. We have developed an innovative AI-based technology, Intelligent Science Exhibits that provide interactive guidance to visitors of an inquiry-based science exhibit. We used this technology to investigate alternative views of appropriate levels of guidance in exhibits. We contrasted visitor engagement and learning from interaction with an Intelligent Science Exhibit to a matched conventional exhibit. We found evidence that the Intelligent Science Exhibit produces substantially better learning for both scientific and engineering outcomes, equivalent levels of self-reported enjoyment, and higher levels of engagement as measured by the length of time voluntarily spent at the exhibit. These findings show potential for transforming hands-on museum exhibits with intelligent science exhibits and more generally indicate how providing children with feedback on their predictions and scientific explanations enhances their learning and engagement.  more » « less
Award ID(s):
2005966 1701107
NSF-PAR ID:
10321234
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of the Learning Sciences
ISSN:
1050-8406
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Over the last decade, large multitouch displays have become commonplace in museums and other public spaces. While there is preliminary evidence that exhibits based on tangible technologies can be more attractive and engaging for visitors than displays alone, very little empirical research has directly compared tangible to large multitouch displays in museums. In this paper, we present a study comparing the use of a tangible and a multitouch tabletop interface in an exhibit designed to explore musical rhythms. From an observation pool of 791 museum visitors, a total of 227 people in 82 groups interacted with one of the two versions of our exhibit. We share the exhibit design, experimental setup, and methods and measures. Our findings highlight advantages of tangible interaction in terms of attracting and engaging children and families. However, the two exhibits were equally effective at supporting collaborative interaction within visitor groups. We conclude with a discussion of the implications for museum exhibit design vis-à-vis visitor engagement and learning. 
    more » « less
  2. null (Ed.)
    Through school-university partnerships that situate learning within culturally relevant educational experiences, faculty, preservice teachers, and school-based educators are able to co-construct and share scientific knowledge. This knowledge consists of pedagogical content knowledge and funds of knowledge that include both knowledge and skills developed in cultural context that have evolved historically. In early childhood education, culturally relevant Science, Technology, Engineering, Arts, and Mathematics (STEAM) learning experiences are particularly important for young children's cognitive and social emotional development. This paper describes how intentional co-planning and collaboration to celebrate the US Read across America Day provided over 100 preschool children in eight classrooms with access to STEAM lessons virtually led by university preservice teachers in partnership with educators in the school. These activities engaged children in exploring art, computer science, physical science, engineering, and mathematics within the context of a culturally relevant version of the fairy tale Goldilocks and the Three Bears. Lessons implemented as part of school-university partnerships support Black and Latinx children's development of a sense of belonging in STEAM. Further, these experiences enhance teacher candidates' abilities to engage in culturally responsive STEAM teaching while receiving ongoing guidance and education from university faculty and school-based educators. Teacher education programs within higher education institutions should embrace school- university partnerships as contexts for the development of shared scientific knowledge and discourse since the benefits are twofold. First, children and teachers gain access to, and engage with, innovative STEAM experiences. Second, preservice teachers learn culturally relevant research-based instructional strategies through university coursework situated in authentic learning experiences; thus, their learning as teacher candidates is enhanced through planning, implementation, evaluation, and critical reflection. 
    more » « less
  3. Informal science learning sites (ISLS) create opportunities for children to learn about science outside of the classroom. This study analyzed children’s learning behaviors in ISLS using video recordings of family visits to a zoo, children’s museum, or aquarium. Furthermore, parent behaviors, features of the exhibits and the presence of an educator were also examined in relation to children’s behaviors. Participants included 63 children (60.3% female) and 44 parents in 31 family groups. Results showed that parents’ science questions and explanations were positively related to children observing the exhibit. Parents’ science explanations were also negatively related to children’s science explanations. Furthermore, children were more likely to provide science explanations when the exhibit was not interactive. Lastly there were no differences in children’s behaviors based on whether an educator was present at the exhibit. This study provides further evidence that children’s interactions with others and their environment are important for children’s learning behaviors. 
    more » « less
  4. Abstract  
    more » « less
  5. Abstract

    Adaptivity in advanced learning technologies offer the possibility to adapt to different student backgrounds, which is difficult to do in a traditional classroom setting. However, there are mixed results on the effectiveness of adaptivity based on different implementations and contexts. In this paper, we introduce AI adaptivity in the context of a new genre of Intelligent Science Stations that bring intelligent tutoring into the physical world. Intelligent Science Stations are mixed-reality systems that bridge the physical and virtual worlds to improve children’s inquiry-based STEM learning. Automated reactive guidance is made possible by a specialized AI computer vision algorithm, providing personalized interactive feedback to children as they experiment and make discoveries in their physical environment. We report on a randomized controlled experiment where we compare learning outcomes of children interacting with the Intelligent Science Station that has task-loop adaptivity incorporated, compared to another version that provides tasks randomly without adaptivity. Our results show that adaptivity using Bayesian Knowledge Tracing in the context of a mixed-reality system leads to better learning of scientific principles, without sacrificing enjoyment. These results demonstrate benefits of adaptivity in a mixed-reality setting to improve children’s science learning.

     
    more » « less