skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: UCE Phylogenomics Resolves Major Relationships Among Ectaheteromorph Ants (Hymenoptera: Formicidae: Ectatomminae, Heteroponerinae): A New Classification For the Subfamilies and the Description of a New Genus
Abstract Uncovering the evolutionary history of the subfamilies Ectatomminae and Heteroponerinae, or ectaheteromorphs, is key to understanding a major branch of the ant tree of life. Despite their diversity and ecological importance, phylogenetic relationships in the group have not been well explored. One particularly suitable tool for resolving phylogeny is the use of ultraconserved elements (UCEs), which have been shown to be ideal markers at a variety of evolutionary time scales. In the present study, we enriched and sequenced 2,127 UCEs from 135 specimens of ectaheteromorph ants and investigated phylogeny using a variety of model-based phylogenomic methods. Trees recovered from partitioned maximum-likelihood and species-tree analyses were well resolved and largely congruent. The results are consistent with an expanded concept of Ectatomminae that now includes the subfamily Heteroponerinae new synonym and its single tribe Heteroponerini new combination. Eleven monophyletic groups are recognized as genera: Acanthoponera, Alfariastatus revived, Boltonia Camacho and Feitosa new genus, Ectatomma, Gnamptogenys, Heteroponera, Holcoponerastatus revived, Poneracanthastatus revived, Rhytidoponera, Stictoponerastatus revived, and Typhlomyrmex. The new phylogenetic framework and classification proposed here will shed light on the study of Ectatomminae taxonomy and systematics, as well as on the morphological evolution of the groups that it comprises.  more » « less
Award ID(s):
2028284 1927161 1932405 2019431
PAR ID:
10321542
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Sosa-Calvo, Jeffrey
Date Published:
Journal Name:
Insect Systematics and Diversity
Volume:
6
Issue:
1
ISSN:
2399-3421
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Theraphosinae is the most diverse subfamily of Theraphosidae spiders, but their evolutionary history remains unresolved to date. This problem is common in taxonomic groups with phylogenetic hypotheses that have often been based only on qualitative morphological characters and, rarely, on molecular analyses. Phylogenomics has significantly contributed to the understanding of the evolution of many non-model groups, such as spiders. Herein, we employed ultraconserved elements (UCEs) phylogenomics to propose a new hypothesis for a group of Theraphosinae genera, namely Lasiodoriforms:Vitalius, Lasiodora, Eupalaestrus, Pterinopelma, Proshapalopus, andNhandu. We propose three genera and their respective morphological diagnoses are provided. Our phylogeny supports the transfer of species from the genusVitaliustoPterinopelmaandProshapalopusand fromProshapalopustoEupalaestrus. Finally, we describe a new species ofVitaliusfrom Southern Brazil. Based on these three new generic descriptions and transferred species, the Lasiodoriform tarantulas comprise nine genera from Argentina, Brazil, Paraguay, and Uruguay, and the genusVitaliusnow includes seven species. 
    more » « less
  2. The Copepoda is a clade of pancrustaceans containing 14,485 species that are extremely varied in their morphology and lifestyle. Not only do copepods dominate marine plankton and sediment communities and make up a sizeable component of the freshwater plankton, but over 6,000 species are symbiotically associated with every major phylum of marine metazoans, mostly as parasites. Unfortunately, our understanding of copepod evolutionary relationships is relatively limited in part because of their extremely divergent morphology, sparse taxon sampling in molecular phylogenetic analyses, a reliance on only a handful of molecular markers, and little taxonomic overlap between phylogenetic studies. Here, a synthesis tree method is used to integrate published phylogenies into a more comprehensive tree of copepods by leveraging phylogenetic and taxonomic data. A literature review in this study finds fewer than 500 species of copepods have been sampled in molecular phylogenetic studies. Using the Open Tree of Life platform, those taxa that have been sampled in previous phylogenetic studies are grafted together and combined with the underlying copepod taxonomic hierarchy from the Open Tree of Life Taxonomy to make a synthesis phylogeny of all copepod species. Taxon sampling with respect to molecular phylogenetic analyses is reviewed for all orders of copepods and shows only 3% of copepod species have been sampled in phylogenetic studies. The resulting synthesis phylogeny reveals copepods have transitioned to a parasitic lifestyle on at least 14 occasions. We examine the underlying phylogenetic, taxonomic, and natural history data supporting these transitions to parasitism; review the species diversity of each parasitic clade; and identify key areas for further phylogenetic investigation. 
    more » « less
  3. Pfeifer, Susanne (Ed.)
    Abstract A species tree is a central concept in evolutionary biology whereby a single branching phylogeny reflects relationships among species. However, the phylogenies of different genomic regions often differ from the species tree. Although tree discordance is widespread in phylogenomic studies, we still lack a clear understanding of how variation in phylogenetic patterns is shaped by genome biology or the extent to which discordance may compromise comparative studies. We characterized patterns of phylogenomic discordance across the murine rodents—a large and ecologically diverse group that gave rise to the laboratory mouse and rat model systems. Combining recently published linked-read genome assemblies for seven murine species with other available rodent genomes, we first used ultraconserved elements (UCEs) to infer a robust time-calibrated species tree. We then used whole genomes to examine finer-scale patterns of discordance across ∼12 million years of divergence. We found that proximate chromosomal regions tended to have more similar phylogenetic histories. There was no clear relationship between local tree similarity and recombination rates in house mice, but we did observe a correlation between recombination rates and average similarity to the species tree. We also detected a strong influence of linked selection whereby purifying selection at UCEs led to appreciably less discordance. Finally, we show that assuming a single species tree can result in substantial deviation from the results with gene trees when testing for positive selection under different models. Collectively, our results highlight the complex relationship between phylogenetic inference and genome biology and underscore how failure to account for this complexity can mislead comparative genomic studies. 
    more » « less
  4. Abstract In the last decade and a half, advances in genetic sequencing technologies have revolutionized systematics, transforming the field from studying morphological characters or a few genetic markers, to genomic datasets in the phylogenomic era. A plethora of molecular phylogenetic studies on many taxonomic groups have come about, converging on, or refuting prevailing morphology or legacy‐marker‐based hypotheses about evolutionary affinities. Spider systematics has been no exception to this transformation and the inter‐relationships of several groups have now been studied using genomic data. About 51 500 extant spider species have been described, all with a conservative body plan, but innumerable morphological and behavioural peculiarities. Inferring the spider tree of life using morphological data has been a challenging task. Molecular data have corroborated many hypotheses of higher‐level relationships, but also resulted in new groups that refute previous hypotheses. In this review, we discuss recent advances in the reconstruction of the spider tree of life and highlight areas where additional effort is needed with potential solutions. We base this review on the most comprehensive spider phylogeny to date, representing 131 of the 132 spider families. To achieve this sampling, we combined six Sanger‐based markers with newly generated and publicly available genome‐scale datasets. We find that some inferred relationships between major lineages of spiders (such as Austrochiloidea, Palpimanoidea and Synspermiata) are robust across different classes of data. However, several new hypotheses have emerged with different classes of molecular data. We identify and discuss the robust and controversial hypotheses and compile this blueprint to design future studies targeting systematic revisions of these problematic groups. We offer an evolutionary framework to explore comparative questions such as evolution of venoms, silk, webs, morphological traits and reproductive strategies. 
    more » « less
  5. Abstract Marker selection has emerged as an important component of phylogenomic study design due to rising concerns of the effects of gene tree estimation error, model misspecification, and data-type differences. Researchers must balance various trade-offs associated with locus length and evolutionary rate among other factors. The most commonly used reduced representation data sets for phylogenomics are ultraconserved elements (UCEs) and Anchored Hybrid Enrichment (AHE). Here, we introduce Rapidly Evolving Long Exon Capture (RELEC), a new set of loci that targets single exons that are both rapidly evolving (evolutionary rate faster than RAG1) and relatively long in length (>1,500 bp), while at the same time avoiding paralogy issues across amniotes. We compare the RELEC data set to UCEs and AHE in squamate reptiles by aligning and analyzing orthologous sequences from 17 squamate genomes, composed of 10 snakes and 7 lizards. The RELEC data set (179 loci) outperforms AHE and UCEs by maximizing per-locus genetic variation while maintaining presence and orthology across a range of evolutionary scales. RELEC markers show higher phylogenetic informativeness than UCE and AHE loci, and RELEC gene trees show greater similarity to the species tree than AHE or UCE gene trees. Furthermore, with fewer loci, RELEC remains computationally tractable for full Bayesian coalescent species tree analyses. We contrast RELEC to and discuss important aspects of comparable methods, and demonstrate how RELEC may be the most effective set of loci for resolving difficult nodes and rapid radiations. We provide several resources for capturing or extracting RELEC loci from other amniote groups. 
    more » « less