Soil carbon (C) in permafrost peatlands is vulnerable to decomposition with thaw under a warming climate. The amount and form of C loss likely depends on the site hydrology following permafrost thaw, but antecedent conditions during peat accumulation are also likely important. We test the role of differing hydrologic conditions on rates of peat accumulation, permafrost formation, and response to warming at an Arctic tundra fen using a process-based model of peatland dynamics in wet and dry landscape settings that persist from peat initiation in the mid-Holocene through future simulations to 2100 CE and 2300 CE. Climate conditions for both the wet and dry landscape settings are driven by the same downscaled TraCE-21ka transient paleoclimate simulations and CCSM4 RCP8.5 climate drivers. The landscape setting controlled the rates of peat accumulation, permafrost formation and the response to climatic warming and permafrost thaw. The dry landscape scenario had high rates of initial peat accumulation (11.7 ± 3.4 mm decade −1 ) and rapid permafrost aggradation but similar total C stocks as the wet landscape scenario. The wet landscape scenario was more resilient to 21st century warming temperatures than the dry landscape scenario and showed 60% smaller C losses and 70% more new net peat C additions by 2100 CE. Differences in the modeled responses indicate the largest effect is related to the landscape setting and basin hydrology due to permafrost controls on decomposition, suggesting an important sensitivity to changing runoff patterns. These subtle hydrological effects will be difficult to capture at circumpolar scales but are important for the carbon balance of permafrost peatlands under future climate warming. 
                        more » 
                        « less   
                    
                            
                            Spatial and Temporal Variability of Permafrost in the Western Part of the Russian Arctic
                        
                    
    
            Climate warming in the Russian Arctic over the past 40 years shows a variety of patterns at different locations and time periods. In the second half of the 20th century, the maximum rates of warming were characteristic of the subarctic permafrost regions of Russia. But in the 21st century, the locations of the greatest rates of climate warming moved to the Arctic zone of Russia. It was one of the reasons for a sharp increase in permafrost temperatures, an increase in the depth of seasonal thaw, and the formation of closed taliks. It was found that as a result of climate change, the differences in permafrost temperatures between different cryogenic landscapes in the area of continuous and discontinuous permafrost distribution have decreased, and in the area of sporadic permafrost distribution are now practically absent. The thermal regime of the ground shows dramatic changes everywhere with a pronounced reduction in the depth of zero annual amplitude. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1832238
- PAR ID:
- 10321722
- Date Published:
- Journal Name:
- Energies
- Volume:
- 15
- Issue:
- 7
- ISSN:
- 1996-1073
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Permafrost, a key component of Arctic ecosystems, is currently affected by climate warming and anticipated to undergo further significant changes in this century. The most pronounced changes are expected to occur in the transition zone between the discontinuous and continuous types of permafrost. We apply a transient temperature dynamic model to investigate the spatiotemporal evolution of permafrost conditions on the Seward Peninsula, Alaska—a region currently characterized by continuous permafrost in its northern part and discontinuous permafrost in the south. We calibrate model parameters using a variational data assimilation technique exploiting historical ground temperature measurements collected across the study area. The model is then evaluated with a separate control set of the ground temperature data. Calibrated model parameters are distributed across the domain according to ecosystem types. The forcing applied to our model consists of historic monthly temperature and precipitation data and climate projections based on the Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios. Simulated near‐surface permafrost extent for the 2000–2010 decade agrees well with existing permafrost maps and previous Alaska‐wide modeling studies. Future projections suggest a significant increase (3.0°C under RCP 4.5 and 4.4°C under RCP 8.5 at the 2 m depth) in mean decadal ground temperature on average for the peninsula for the 2090–2100 decade when compared to the period of 2000–2010. Widespread degradation of the near‐surface permafrost is projected to reduce its extent at the end of the 21st century to only 43% of the peninsula's area under RCP 4.5 and 8% under RCP 8.5.more » « less
- 
            Abstract Groundwater discharge is an important mechanism through which fresh water and associated solutes are delivered to the ocean. Permafrost environments have traditionally been considered hydrogeologically inactive, yet with accelerated climate change and permafrost thaw, groundwater flow paths are activating and opening subsurface connections to the coastal zone. While warming has the potential to increase land-sea connectivity, sea-level change has the potential to alter land-sea hydraulic gradients and enhance coastal permafrost thaw, resulting in a complex interplay that will govern future groundwater discharge dynamics along Arctic coastlines. Here, we use a recently developed permafrost hydrological model that simulates variable-density groundwater flow and salinity-dependent freeze-thaw to investigate the impacts of sea-level change and land and ocean warming on the magnitude, spatial distribution, and salinity of coastal groundwater discharge. Results project both an increase and decrease in discharge with climate change depending on the rate of warming and sea-level change. Under high warming and low sea-level rise scenarios, results show up to a 58% increase in coastal groundwater discharge by 2100 due to the formation of a supra-permafrost aquifer that enhances freshwater delivery to the coastal zone. With higher rates of sea-level rise, the increase in discharge due to warming is reduced to 21% as sea-level rise decreased land-sea hydraulic gradients. Under lower warming scenarios for which supra-permafrost groundwater flow was not established, discharge decreased by up to 26% between 1980 and 2100 for high sea-level rise scenarios and increased only 8% under low sea-level rise scenarios. Thus, regions with higher warming rates and lower rates of sea-level change (e.g. northern Nunavut, Canada) will experience a greater increase in discharge than regions with lower warming rates and higher rates of sea-level change. The magnitude, location and salinity of discharge have important implications for ecosystem function, water quality, and carbon dynamics in coastal zones.more » « less
- 
            Abstract Northern circumpolar permafrost thaw affects global carbon cycling, as large amounts of stored soil carbon becomes accessible to microbial breakdown under a warming climate. The magnitude of carbon release is linked to the extent of permafrost thaw, which is locally variable and controlled by soil thermodynamics. Soil thermodynamic properties, such as thermal diffusivity, govern the reactivity of the soil‐atmosphere thermal gradient, and are controlled by soil composition and drainage. In order to project permafrost thaw for an Alaskan tundra experimental site, we used seven years of site data to calibrate a soil thermodynamic model using a data assimilation technique. The model reproduced seasonal and interannual temperature dynamics for shallow (5–40 cm) and deep soil layers (2–4 m), and simulations of seasonal thaw depth closely matched observed data. The model was then used to project permafrost thaw at the site to the year 2100 using climate forcing data for three future climate scenarios (RCP 4.5, 6.0, and 8.5). Minimal permafrost thawing occurred until mean annual air temperatures rose above the freezing point, after which we measured over a 1 m increase in thaw depth for every 1 °C rise in mean annual air temperature. Under no projected warming scenario was permafrost remaining in the upper 3 m of soil by 2100. We demonstrated an effective data assimilation method that optimizes parameterization of a soil thermodynamic model. The sensitivity of local permafrost to climate warming illustrates the vulnerability of sub‐Arctic tundra ecosystems to significant and rapid soil thawing.more » « less
- 
            Abstract. Anthropogenic warming in the Arctic is causing hydrological cycle intensification and permafrost thaw, with implications for flows of water, carbon, and energy from terrestrial biomes to coastal zones. To better understand the likely impacts of these changes, we used a hydrology model driven by meteorological data from atmospheric reanalysis and two global climate models for the period 1980–2100. The hydrology model accounts for soil freeze–thaw processes and was applied across the pan-Arctic drainage basin. The simulations point to greater changes over northernmost areas of the basin underlain by permafrost and to the western Arctic. An acceleration of simulated river discharge over the recent past is commensurate with trends drawn from observations and reported in other studies. Between early-century (2000–2019) and late-century (2080–2099) periods, the model simulations indicate an increase in annual total runoff of 17 %–25 %, while the proportion of runoff emanating from subsurface pathways is projected to increase by 13 %–30 %, with the largest changes noted in summer and autumn and across areas with permafrost. Most notably, runoff contributions to river discharge shift to northern parts of the Arctic Basin that contain greater amounts of soil carbon. Each season sees an increase in subsurface runoff; spring is the only season where surface runoff dominates the rise in total runoff, and summer experiences a decline in total runoff despite an increase in the subsurface component. The greater changes that are seen in areas where permafrost exists support the notion that increased soil thaw is shifting hydrological contributions to more subsurface flow. The manifestations of warming, hydrological cycle intensification, and permafrost thaw will impact Arctic terrestrial and coastal environments through altered river flows and the materials they transport.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    