skip to main content


Title: Bayesian search for gravitational wave bursts in pulsar timing array data
Abstract The nanohertz frequency band explored by pulsar timing arrays provides a unique discovery space for gravitational wave (GW) signals. In addition to signals from anticipated sources, such as those from supermassive black hole binaries, some previously unimagined sources may emit transient GWs (a.k.a. bursts) with unknown morphology. Unmodeled transients are not currently searched for in this frequency band, and they require different techniques from those currently employed. Possible sources of such GW bursts in the nanohertz regime are parabolic encounters of supermassive black holes, cosmic string cusps and kinks, or other, as-yet-unknown phenomena. In this paper we present BayesHopperBurst , a Bayesian search algorithm capable of identifying generic GW bursts by modeling both coherent and incoherent transients as a sum of Morlet–Gabor wavelets. A trans-dimensional reversible jump Markov chain Monte Carlo sampler is used to select the number of wavelets best describing the data. We test BayesHopperBurst on various simulated datasets including different combinations of signals and noise transients. Its capability to run on real data is demonstrated by analyzing data of the pulsar B1855 + 09 from the NANOGrav 9 year dataset. Based on a simulated dataset resembling the NANOGrav 12.5 year data release, we predict that at our most sensitive time–frequency location we will be able to probe GW bursts with a root-sum-squared amplitude higher than ∼5 × 10 −11  Hz −1/2 , which corresponds to ∼40 M ⊙ c 2 emitted in GWs at a fiducial distance of 100 Mpc.  more » « less
Award ID(s):
2020265
NSF-PAR ID:
10321826
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Classical and Quantum Gravity
Volume:
38
Issue:
9
ISSN:
0264-9381
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The 15 yr pulsar timing data set collected by the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) shows positive evidence for the presence of a low-frequency gravitational-wave (GW) background. In this paper, we investigate potential cosmological interpretations of this signal, specifically cosmic inflation, scalar-induced GWs, first-order phase transitions, cosmic strings, and domain walls. We find that, with the exception of stable cosmic strings of field theory origin, all these models can reproduce the observed signal. When compared to the standard interpretation in terms of inspiraling supermassive black hole binaries (SMBHBs), many cosmological models seem to provide a better fit resulting in Bayes factors in the range from 10 to 100. However, these results strongly depend on modeling assumptions about the cosmic SMBHB population and, at this stage, should not be regarded as evidence for new physics. Furthermore, we identify excluded parameter regions where the predicted GW signal from cosmological sources significantly exceeds the NANOGrav signal. These parameter constraints are independent of the origin of the NANOGrav signal and illustrate how pulsar timing data provide a new way to constrain the parameter space of these models. Finally, we search for deterministic signals produced by models of ultralight dark matter (ULDM) and dark matter substructures in the Milky Way. We find no evidence for either of these signals and thus report updated constraints on these models. In the case of ULDM, these constraints outperform torsion balance and atomic clock constraints for ULDM coupled to electrons, muons, or gluons. 
    more » « less
  2. MCMC chains for the GWB analyses performed in the paper "The NANOGrav 15 yr Data Set: Search for Signals from New Physics". 

    The data is provided in pickle format. Each file contains a NumPy array with the MCMC chain (with burn-in already removed), and a dictionary with the model parameters' names as keys and their priors as values. You can load them as

    with open ('path/to/file.pkl', 'rb') as pick: temp = pickle.load(pick) params = temp[0] chain = temp[1]

    The naming convention for the files is the following:

    • igw: inflationary Gravitational Waves (GWs)
    • sigw: scalar-induced GWs
      • sigw_box: assumes a box-like feature in the primordial power spectrum.
      • sigw_delta: assumes a delta-like feature in the primordial power spectrum.
      • sigw_gauss: assumes a Gaussian peak feature in the primordial power spectrum.
    • pt: cosmological phase transitions
      • pt_bubble: assumes that the dominant contribution to the GW productions comes from bubble collisions.
      • pt_sound: assumes that the dominant contribution to the GW productions comes from sound waves.
    • stable: stable cosmic strings
      • stable-c: stable strings emitting GWs only in the form of GW bursts from cusps on closed loops.
      • stable-k: stable strings emitting GWs only in the form of GW bursts from kinks on closed loops.
      • stable-m: stable strings emitting monochromatic GW at the fundamental frequency.
      • stable-n: stable strings described by numerical simulations including GWs from cusps and kinks.
    • meta: metastable cosmic strings
      • meta-l: metastable strings with GW emission from loops only.
      • meta-ls metastable strings with GW emission from loops and segments.
    • super: cosmic superstrings.
    • dw: domain walls
      • dw-sm: domain walls decaying into Standard Model particles.
      • dw-dr: domain walls decaying into dark radiation.

    For each model, we provide four files. One for the run where the new-physics signal is assumed to be the only GWB source. One for the run where the new-physics signal is superimposed to the signal from Supermassive Black Hole Binaries (SMBHB), for these files "_bhb" will be appended to the model name. Then, for both these scenarios, in the "compare" folder we provide the files for the hypermodel runs that were used to derive the Bayes' factors.

    In addition to chains for the stochastic models, we also provide data for the two deterministic models considered in the paper (ULDM and DM substructures). For the ULDM model, the naming convention of the files is the following (all the ULDM signals are superimposed to the SMBHB signal, see the discussion in the paper for more details)

    • uldm_e: ULDM Earth signal.
    • uldm_p: ULDM pulsar signal
      • uldm_p_cor: correlated limit
      • uldm_p_unc: uncorrelated limit
    • uldm_c: ULDM combined Earth + pulsar signal direct coupling 
      • uldm_c_cor: correlated limit
      • uldm_c_unc: uncorrelated limit
    • uldm_vecB: vector ULDM coupled to the baryon number
      • uldm_vecB_cor: correlated limit
      • uldm_vecB_unc: uncorrelated limit 
    • uldm_vecBL: vector ULDM coupled to B-L
      • uldm_vecBL_cor: correlated limit
      • uldm_vecBL_unc: uncorrelated limit
    • uldm_c_grav: ULDM combined Earth + pulsar signal for gravitational-only coupling
      • uldm_c_grav_cor: correlated limit
        • uldm_c_cor_grav_low: low mass region  
        • uldm_c_cor_grav_mon: monopole region
        • uldm_c_cor_grav_low: high mass region
      • uldm_c_unc: uncorrelated limit
        • uldm_c_unc_grav_low: low mass region  
        • uldm_c_unc_grav_mon: monopole region
        • uldm_c_unc_grav_low: high mass region

    For the substructure (static) model, we provide the chain for the marginalized distribution (as for the ULDM signal, the substructure signal is always superimposed to the SMBHB signal)

     
    more » « less
  3. Abstract Pulsar timing array (PTA) experiments are becoming increasingly sensitive to gravitational waves (GWs) in the nanohertz frequency range, where the main astrophysical sources are supermassive black hole binaries (SMBHBs), which are expected to form following galaxy mergers. Some of these individual SMBHBs may power active galactic nuclei, and thus their binary parameters could be obtained electromagnetically, which makes it possible to apply electromagnetic (EM) information to aid the search for a GW signal in PTA data. In this work, we investigate the effects of such an EM-informed search on binary detection and parameter estimation by performing mock data analyses on simulated PTA data sets. We find that by applying EM priors, the Bayes factor of some injected signals with originally marginal or sub-threshold detectability (i.e., Bayes factor ∼1) can increase by a factor of a few to an order of magnitude, and thus an EM-informed targeted search is able to find hints of a signal when an uninformed search fails to find any. Additionally, by combining EM and GW data, one can achieve an overall improvement in parameter estimation, regardless of the source’s sky location or GW frequency. We discuss the implications for the multi-messenger studies of SMBHBs with PTAs. 
    more » « less
  4. ABSTRACT

    Supermassive black hole binaries (SMBHBs) are a natural outcome of galaxy mergers and should form frequently in galactic nuclei. Sub-parsec binaries can be identified from their bright electromagnetic emission, e.g. Active Galactic Nuclei (AGNs) with Doppler shifted broad emission lines or AGN with periodic variability, as well as from the emission of strong gravitational radiation. The most massive binaries (with total mass >108M⊙) emit in the nanohertz band and are targeted by Pulsar Timing Arrays (PTAs). Here we examine the synergy between electromagnetic and gravitational wave signatures of SMBHBs. We connect both signals to the orbital dynamics of the binary and examine the common link between them, laying the foundation for joint multimessenger observations. We find that periodic variability arising from relativistic Doppler boost is the most promising electromagnetic signature to connect with GWs. We delineate the parameter space (binary total mass/chirp mass versus binary period/GW frequency) for which joint observations are feasible. Currently multimessenger detections are possible only for the most massive and nearby galaxies, limited by the sensitivity of PTAs. However, we demonstrate that as PTAs collect more data in the upcoming years, the overlapping parameter space is expected to expand significantly.

     
    more » « less
  5. Abstract Hundreds of millions of supermassive black hole binaries are expected to contribute to the gravitational-wave signal in the nanohertz frequency band. Their signal is often approximated either as an isotropic Gaussian stochastic background with a power-law spectrum or as an individual source corresponding to the brightest binary. In reality, the signal is best described as a combination of a stochastic background and a few of the brightest binaries modeled individually. We present a method that uses this approach to efficiently create realistic pulsar timing array data sets using synthetic catalogs of binaries based on the Illustris cosmological hydrodynamic simulation. We explore three different properties of such realistic backgrounds that could help distinguish them from those formed in the early universe: (i) their characteristic strain spectrum, (ii) their statistical isotropy, and (iii) the variance of their spatial correlations. We also investigate how the presence of confusion noise from a stochastic background affects detection prospects of individual binaries. We calculate signal-to-noise ratios of the brightest binaries in different realizations for a simulated pulsar timing array based on the NANOGrav 12.5 yr data set extended to a time span of 15 yr. We find that ∼6% of the realizations produce systems with signal-to-noise ratios larger than 5, suggesting that individual systems might soon be detected (the fraction increases to ∼41% at 20 yr). These can be taken as a pessimistic prediction for the upcoming NANOGrav 15 yr data set, since it does not include the effect of potentially improved timing solutions and newly added pulsars. 
    more » « less