skip to main content


Title: Sculpting the Plasmonic Responses of Nanoparticles by Directed Electron Beam Irradiation
Abstract

Spatial confinement of matter in functional nanostructures has propelled these systems to the forefront of nanoscience, both as a playground for exotic physics and quantum phenomena and in multiple applications including plasmonics, optoelectronics, and sensing. In parallel, the emergence of monochromated electron energy loss spectroscopy (EELS) has enabled exploration of local nanoplasmonic functionalities within single nanoparticles and the collective response of nanoparticle assemblies, providing deep insight into associated mechanisms. However, modern synthesis processes for plasmonic nanostructures are often limited in the types of accessible geometry, and materials and are limited to spatial precisions on the order of tens of nm, precluding the direct exploration of critical aspects of the structure‐property relationships. Here, the atomic‐sized probe of the scanning transmission electron microscope is used to perform precise sculpting and design nanoparticle configurations. Using low‐loss EELS, dynamic analyses of the evolution of the plasmonic response are provided. It is shown that within self‐assembled systems of nanoparticles, individual nanoparticles can be selectively removed, reshaped, or patterned with nanometer‐level resolution, effectively modifying the plasmonic response in both space and energy. This process significantly increases the scope for design possibilities and presents opportunities for unique structure development, which are ultimately the key for nanophotonic design.

 
more » « less
Award ID(s):
1905263 1720595
NSF-PAR ID:
10448242
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Small
Volume:
18
Issue:
1
ISSN:
1613-6810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ConspectusGold nanoparticles (AuNPs) exhibit unique size- and shape-dependent properties not obtainable at the macroscale. Gold nanorods (AuNRs), with their morphology-dependent optical properties, ability to convert light to heat, and high surface-to-volume ratios, are of great interest for biosensing, medicine, and catalysis. While the gold core provides many fascinating properties, this Account focuses on AuNP soft surface coatings, which govern the interactions of nanoparticles with the local environments. Postmodification of AuNP surface chemistry can greatly alter NP colloidal stability, nano-bio interactions, and functionality. Polyelectrolyte coatings provide controllable surface-coating thickness and charge, which impact the composition of the acquired corona in biological settings. Covalent modification, in which covalently bound ligands replace the original capping layer, is often performed with thiols and disulfides due to their ability to replace native coatings. N-heterocyclic carbenes and looped peptides expand the possible functionalities of the ligand layer.The characterization of surface ligands bound to AuNPs, in terms of ligand density and dynamics, remains a challenge. Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for understanding molecular structures and dynamics. Our recent NMR work on AuNPs demonstrated that NMR data were obtainable for ligands on NPs with diameters up to 25 nm for the first time. This was facilitated by the strong proton NMR signals of the trimethylammonium headgroup, which are present in a distinct regime from other ligand protons’ signals. Ligand density analyses showed that the smallest AuNPs (below 4 nm) had the largest ligand densities, yet spin–spin T2 measurements revealed that these smallest NPs also had the most mobile ligand headgroups. Molecular dynamics simulations were able to reconcile these seemingly contradictory results.While NMR spectroscopy provides ligand information averaged over many NPs, the ligand distribution on individual particles’ surfaces must also be probed to fully understand the surface coating. Taking advantage of improvements in electron energy loss spectroscopy (EELS) detectors employed with scanning transmission electron microscopy (STEM), a single-layer graphene substrate was used to calibrate the carbon K-edge EELS signal, allowing quantitative imaging of the carbon atom densities on AuNRs with sub-nanometer spatial resolution. In collaboration with others, we revealed that the mean value for surfactant-bilayer-coated AuNRs had 10–30% reduced ligand density at the ends of the rods compared to the sides, confirming prior indirect evidence for spatially distinct ligand densities.Recent work has found that surface ligands on nanoparticles can, somewhat surprisingly, enhance the selectivity and efficiency of the electrocatalytic reduction of CO2 by controlling access to the active site, tuning its electronic and chemical environment, or denying entry to impurities that poison the nanoparticle surface to facilitate reduction. Looking to the future, while NMR and EELS are powerful and complementary techniques for investigating surface coatings on AuNPs, the frontier of this field includes the development of methods to probe the surface ligands of individual NPs in a high-throughput manner, to monitor nano-bio interactions within complex matrices, and to study structure–property relationships of AuNPs in biological systems. 
    more » « less
  2. Abstract

    Ring‐shaped nanostructures can focus, filter, and manipulate electromagnetic waves, but are challenging to incorporate into devices using standard nanofabrication techniques. Directed self‐assembly (DSA) of block copolymers (BCPs) on lithographically patterned templates has successfully been used to fabricate concentric rings and spirals as etching masks. However, this method is limited by BCP phase behavior and material selection. Here, a straightforward approach to generate ring‐shaped nanoparticle assemblies in thin films of supramolecular nanocomposites is demonstrated. DSA is used to guide the formation of concentric rings with radii spanning 150–1150 nm and ring widths spanning 30–60 nm. When plasmonic nanoparticles are used, ring nanodevice arrays can be fabricated in one step, and the completed devices produce high‐quality orbital angular momentum (OAM). Nanocomposite DSA simplifies and streamlines nanofabrication by producing metal structures without etching or deposition steps; it also introduces interparticle coupling as a new design axis. Detailed analysis of the nanoparticle ring assemblies confirms that the supramolecular system self‐regulates the spatial distribution of its components, and thus exhibits a degree of flexibility absent in DSA of BCPs alone, where structures are determined by polymer‐pattern incommensurability. The present studies also provide guidelines for developing self‐regulating DSA as an alternative to incommensurability‐driven methods.

     
    more » « less
  3. The magneto-optical signatures of colloidal noble metal nanostructures, spanning both discrete nanoclusters (<2 nm) and plasmonic nanoparticles (>2 nm), exhibit rich structure-property correlations, impacting applications including photonic integrated circuits, light modulation, applied spectroscopy, and more. For nanoclusters, electron doping and single-atom substitution modify both the intensity of the magneto-optical response and the degree of transient spin polarization. Nanoparticle size and morphology also modulate the magnitude and polarity of plasmon-mediated magneto-optical signals. This intimate interplay between nanostructure and magneto-optical properties becomes especially apparent in magnetic circular dichroism (MCD) and magnetic circular photoluminescence (MCPL) spectroscopic data. Whereas MCD spectroscopy informs on a metal nanostructure's steady-state extinction properties, its MCPL counterpart is sensitive to electronic spin and orbital angular momenta of transiently excited states. This review describes the size- and structure-dependent magneto-optical properties of nanoscale metals, emphasizing the increasingly important role of MCPL in understanding transient spin properties and dynamics. 
    more » « less
  4. Abstract

    Dispersing inorganic colloidal nanoparticles within nematic liquid crystals provides a versatile platform both for forming new soft matter phases and for predefining physical behavior through mesoscale molecular‐colloidal self‐organization. However, owing to formation of particle‐induced singular defects and complex elasticity‐mediated interactions, this approach has been implemented mainly just for colloidal nanorods and nanoplatelets, limiting its potential technological utility. Here, orientationally ordered nematic colloidal dispersions are reported of pentagonal gold bipyramids that exhibit narrow but controlled polarization‐dependent surface plasmon resonance spectra and facile electric switching. Bipyramids tend to orient with their C5rotation symmetry axes along the nematic director, exhibiting spatially homogeneous density within aligned samples. Topological solitons, like heliknotons, allow for spatial reorganization of these nanoparticles according to elastic free energy density within their micrometer‐scale structures. With the nanoparticle orientations slaved to the nematic director and being switched by low voltages ≈1 V within a fraction of a second, these plasmonic composite materials are of interest for technological uses like color filters and plasmonic polarizers, as well as may lead to the development of unusual nematic phases, like pentatic liquid crystals.

     
    more » « less
  5. Understanding the biomineralization pathways in living biological species is a grand challenge owing to the difficulties in monitoring the mineralization process at sub-nanometer scales. Here, we monitored the nucleation and growth of magnetosome nanoparticles in bacteria and in real time using a transmission electron microscope (TEM). To enable biomineralization within the bacteria, we subcultured magnetotactic bacteria grown in iron-depleted medium and then mixed them with iron-rich medium within graphene liquid cells (GLCs) right before imaging the bacteria under the microscope. Using in situ electron energy loss spectroscopy (EELS), the oxidation state of iron in the biomineralized magnetosome was analysed to be magnetite with trace amount of hematite. The increase of mass density of biomineralized magnetosomes as a function of incubation time indicated that the bacteria maintained their functionality during the in situ TEM imaging. Our results underpin that GLCs enables a new platform to observe biomineralization events in living biological species at unprecedented spatial resolution. Understanding the biomineralization processes in living organisms facilitates the design of biomimetic materials, and will enable a paradigm shift in understanding the evolution of biological species. 
    more » « less