skip to main content


Title: Cave and rock shelter sediments of southern Africa: a review of the chronostratigraphic and palaeoenvironmental record from Marine Isotope Stage 6 to 1
Abstract Caves and rock shelters contribute important records to local, regional and sub-continental reconstructions of environment and climate change through the southern African Quaternary. Against a backdrop of pronounced climate change, the archaeological record of the Marine Isotope Stage 6 to 1 period in southern Africa documents a remarkable time in the behavioural and technological evolution of anatomically modern humans. Significant evidence of this evolution is represented in diverse components of the sedimentary record in caves and rock shelters in the region. We present a catalogue of published caves and rock shelters in southern Africa that preserve temporally-relevant clastic and chemical palaeoclimatic proxies in order to: (1) facilitate the integration of cave and rock shelter sedimentary data into broader, regional chronostratigraphically-correlated palaeoclimatic sequences; and (2) identify possible areas and proxies that require focused research in the future. To demonstrate the complexity of the Marine Isotope Stage 6 to 1 stratigraphic record and use of palaeoenvironmental proxies, we present three case studies representing interior and coastal contexts: Border Cave, Klasies River Mouth and Pinnacle Point. These examples aptly demonstrate the challenges of these contexts, but also the opportunities for palaeoenvironmental research in southern Africa when conducted through integrated, multidisciplinary approaches. Published records of palaeoenvironmental research from cave and rock shelter sequences in southern Africa are heavily biased to the South African coastal areas and the record is temporally and spatially fragmented. However, there are interesting patterns in the chronostratigraphic record and in the distribution of sites within the context of the geology and vegetation ecology of southern Africa that require further exploration. There are also promising techniques in stable isotope analysis that can be applied to abundant sedimentary components found in the region’s caves and rock shelters, and in its museums.  more » « less
Award ID(s):
2002486
NSF-PAR ID:
10322094
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
South African Journal of Geology
Volume:
124
Issue:
4
ISSN:
1012-0750
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Over the last few million years, Africa’s climate exhibits a long-term drying trend with episodes of high climate variability coinciding with the intensification of glacial-interglacial cycles. Of particular interest, is a shift to drier and more variable conditions noted in the Olorgesailie Formation (Kenya) between 500 and 300 thousand years ago (ka) in which Potts et al. (2018) observed a turnover of ~85% of large-body mammalian fauna to smaller-body related taxa and suggested that the shift was an evolutionary response to better adapt to the changing climate. However, an erosional gap in the Olorgesailie record during this time interval means that the cause of this faunal shift is still an outstanding question. To understand East African climate variability during the Mid-Pleistocene, we analyze Lake Malawi drill core MAL 05–1 (~11ºS, 34ºE) to investigate if a specific climatic event stands out as a possible driver of the dramatic change observed in the East African mammal community. We use organic geochemical proxies including branched glycerol diaklyl glycerol tetraethers (brGDGTs; the MBT′5ME index) andleaf wax carbon and deuterium isotopes to develop high-resolution temperature, vegetation, and precipitation records, respectively, between 600 and 200 ka. Results show an abrupt temperature increase of ~9°C occurring in less than 3000 years during Glacial Termination V, which is the Marine Isotope Stage (MIS) 12 to MIS 11 transition at ~330 ka. Preliminary leaf wax deuterium isotopic values show an enrichment that coincides with deglacial warmings suggesting a shift to more arid conditions during interglacial than in glacial periods. This change from a cold/wet glacial to a warm/dry interglacial contrast with the cool/dry pattern of the Last Glacial Maximum (LGM) in East Africa which transitioned to a warm/wet Holocene. Leaf wax carbon isotopes are presently being analyzed to understand past shifts in C3 vs C4 vegetation type, which can be related to climatic conditions. We propose that the major warming and drying during Termination V in East Africa represents a significant abrupt change in the climate of eastern Africa and was a likely driver of the major faunal turnover noted in the region. 
    more » « less
  2. Lake El'gygytgyn, located in central Chukotka, Russian Arctic, was the subject of an international drilling project that resulted in the recovery of the longest continuous palaeoclimatic and palaeoenvironmental record for the terrestrial Arctic covering the last 3.6 million years. Here, we present the reconstruction of the lake‐level fluctuations of Lake El'gygytgyn since Marine Isotope Stage (MIS) 7 based on lithological and palynological as well as chronological studies of shallow‐water sediment cores and subaerial lake terraces. Reconstructed lake levels show an abrupt rise during glacial–interglacial terminations (MIS6/5 andMIS2/1) and during theMIS4/3 stadial–interstadial transition. The most prominent lowstands occurred during glacial periods associated with a permanent lake‐ice cover (namelyMIS6,MIS4 andMIS2). Major triggering mechanisms of the lake‐level fluctuations at Lake El'gygytgyn are predominantly changes in air temperature and precipitation. Regional summer temperatures control the volume of meltwater supply as well as the duration of the lake‐ice cover (permanent or seasonal). The duration of the lake‐ice cover, in turn, enables or hampers near‐shore sediment transport, thus leading to long‐term lake‐level oscillations on glacial–interglacial time scales by blocking or opening the lake outflow, respectively. During periods of seasonal ice cover the lake level was additionally influenced by changes in precipitation. The discovered mechanism of climatologically driven level fluctuations of Lake El'gygytgyn are probably valid for large hydrologically open lakes in the Arctic in general, thus helping to understand arctic palaeohydrology and providing missing information for climate modelling.

     
    more » « less
  3. Abstract

    Palaeontological deposits on Rusinga Island, Lake Victoria, Kenya, provide a rich record of floral and faunal evolution in the early Neogene of East Africa. Yet, despite a wealth of available fossil material, previous palaeoenvironmental reconstructions from Rusinga have resulted in widely divergent results, ranging from closed forest to open woodland environments. Presented here is a detailed study of the sedimentology and fauna of the early Miocene Hiwegi Formation at Waregi Hill on Rusinga Island, Kenya. New sedimentological analyses demonstrate that the Hiwegi Formation records an environmental transition from the bottom to the top of the formation. Lower in the Hiwegi Formation, satin‐spar calcite after gypsum in siltstone deposits are interpreted as evidence for open hypersaline lakes. Moving up‐section, carbonate deposits – interpreted previously as evidence of aridity – are actually diagenetic calcite cements, which preserve root systems of trees, suggesting a more closed environment; further up‐section, the uppermost palaeosol layer contains abundant root traces and tree‐stump casts, previously reported as evidence of a closed‐canopy forest. These newly interpreted environmental differences are reflected by differences in faunal composition and abundance data from Hiwegi Formation fossil sites R1 and R3. Taken together, this work suggests that divergent palaeoenvironmental reconstructions in previous studies may have been informed by time‐averaging across multiple environments. Further, results demonstrate that during the early Miocene local or regional habitat heterogeneity already existed. Rusinga’s Hiwegi Formation varied both spatially and temporally, which challenges the interpretation that a broad forested environment stretched across the African continent during the early Neogene, transitioning later to predominately open landscapes that characterize the region today. This result has important implications for interpretations of the selective pressures faced by early Miocene fauna, including Rusinga Island’s well‐preserved fossil primates.

     
    more » « less
  4. Abstract

    We present new stable oxygen and carbon isotope composite records (δ18O, δ13C) of speleothems from Sandkraal Cave 1 (SK1) on the South African south coast for the time interval between 104 and 18 ka (with a hiatus between 48 and 41 ka). Statistical comparisons using kernel-based correlation analyses and semblance analyses based on continuous wavelet transforms inform the relationships of the new speleothem records to other proxies and their changes through time. Between 105 and ~70 ka, changes of speleothem δ18O values at SK1 are likely related to rainfall seasonality. Variations of δ13C values are associated with changes of vegetation density, prior carbonate precipitation (PCP), CO2degassing in the cave, and possibly variations of the abundance of C3and C4grasses in the vegetation. The relationships of δ18O with other proxies shift between ~70 and 48 ka (Marine Isotope Stages 4–3) so that both stable isotope records now reflect CO2degassing, evaporation, and PCP. Similar relationships also continue after the hiatus for the deposition phase between 42 and 18 ka. Our findings support modeling results suggesting drier conditions in the study area when the Southern Hemisphere westerlies are shifted north and the paleo–Agulhas Plain is exposed.

     
    more » « less
  5. Roughly 85% of mammalian herbivore species in southern Kenya were replaced by smaller, more adaptable species at some time between 400,000 years ago (400ka) and 500 ka. While this major taxonomic turnover has been attributed to a shift to more a more arid and variable climate and tectonic activity, we wondered if a particularly abrupt shift, a “tipping point,” in climate at some time between 400 and 500 ka was the cause. We analyzed the highest resolution paleoclimate record available in East Africa, Lake Malawi drill core MAL05-1B, for organic geochemical proxies, including branched glycerol dialkyl glycerol tetraethers (GDGTs) and leaf wax deuterium isotopic records to develop the temperature and precipitation history, respectively, between 600 and 200 ka. Results show an abrupt temperature increase of ~6°C occurring in less than 3000 years during Glacial Termination V, which is the Marine Isotope Stage (MIS) 12 to MIS 11 transition at ~430 ka. Surprisingly, even more intense warming occurred during Glacial Termination VI around 510 ka. Notably, these deglacial warmings coincide with enriched leaf wax deuterium isotopic values suggesting a shift to more arid conditions in interglacials MIS 13 and 11 than in glacials MIS 14 and 12, respectively. These changes from cold/wet glacials to warm/dry interglacials contrast with the cool/dry pattern of the Last Glacial Maximum (LGM) in East Africa that transitioned to a warm/wet Holocene. We propose that the major warming and drying during Termination V in the Malawi basin represents a significant abrupt change that impacted much of eastern Africa around 430 ka and was a likely driver of the major faunal turnover noted in the region. 
    more » « less