Climate Science, Data Science and Distributed Computing to Build Teen Students' Positive Perceptions of CS
More Like this
-
Computational tools, and the computational thinking (CT) involved in their use, are pervasive in science, supporting and often transforming scientific understanding. Yet, longstanding disparities in access to learning opportunities means that CT’s growing role risks deepening persistent inequities in STEM [2]. To address this problem, our team developed and studied two 10-lesson instructional units for middle school science classrooms, each designed to challenge persistent barriers to equitable participation in STEM. The units aim to position coding as a tool for doing science, and ultimately, encourage a broader range of students, and females in particular, to identify as programmers. Students who participated (n=391) in a recent study of the units demonstrated statistically significant learning gains, as measured on an external assessment of CT. Learning gains were particularly pronounced for female students. Findings suggest that students can develop CT through instruction that foregrounds science, and in ways that lead to more equitable outcomes.