skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spacetime duality between localization transitions and measurement-induced transitions
Award ID(s):
1752417
PAR ID:
10322491
Author(s) / Creator(s):
;
Date Published:
Journal Name:
PRX Quantum
Volume:
2
Issue:
4
ISSN:
2691-3399
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As phenomena that necessarily emerge from the collective behavior of interacting particles, phase transitions continue to be difficult to predict using statistical thermodynamics. A recent proposal called the topological hypothesis suggests that the existence of a phase transition could perhaps be inferred from changes to the topology of the accessible part of the configuration space. This paper instead suggests that such a topological change is often associated with a dramatic change in the configuration space geometry, and that the geometric change is the actual driver of the phase transition. More precisely, a geometric change that brings about a discontinuity in the mixing time required for an initial probability distribution on the configuration space to reach steady-state is conjectured to be related to the onset of a phase transition in the thermodynamic limit. This conjecture is tested by evaluating the diffusion diameter and epsilon-mixing time of the configuration spaces of hard disk and hard sphere systems of increasing size. Explicit geometries are constructed for the configuration spaces of these systems, and numerical evidence suggests that a discontinuity in the epsilon-mixing time coincides with the solid-fluid phase transition in the thermodynamic limit. 
    more » « less
  2. null (Ed.)
    The discovery and control of new phases of matter is a central endeavour in materials research. The emergence of atomically thin 2D materials, such as transition-metal dichalcogenides and monochalcogenides, has allowed the study of diffusive, displacive and quantum phase transitions in 2D. In this Review, we discuss the thermodynamic and kinetic features of 2D phase transitions arising from dimensionality confinement, elasticity, electrostatics, defects and chemistry unique to 2D materials. We highlight polymorphic, ferroic and high-temperature diffusive phase changes, and examine the technological potential of controlled 2D phase transitions. Finally, we give an outlook to future opportunities in the study and applications of 2D phase transitions, and identify key challenges that remain to be addressed. 
    more » « less