Consider a bank that uses an AI system to decide which loan applications to approve. We want to ensure that the system is fair, that is, it does not discriminate against applicants based on a predefined list of sensitive attributes, such as gender and ethnicity. We expect there to be a regulator whose job it is to certify the bank's system as fair or unfair. We consider issues that the regulator will have to confront when making such a decision, including the precise definition of fairness, dealing with proxy variables, and dealing with what we call allowed variables, that is, variables such as salary on which the decision is allowed to depend, despite being correlated with sensitive variables. We show (among other things) that the problem of deciding fairness as we have defined it is co-NP-complete, but then argue that, despite that, in practice the problem should be manageable.
more »
« less
On testing for discrimination using causal models
Consider a bank that uses an AI system to decide which loan applications to approve. We want to ensure that the system is fair, that is, it does not discriminate against applicants based on a predefined list of sensitive attributes, such as gender and ethnicity. We expect there to be a regulator whose job it is to certify the bank's system as fair or unfair. We consider issues that the regulator will have to confront when making such a decision, including the precise definition of fairness, dealing with proxy variables, and dealing with what we call allowed variables, that is, variables such as salary on which the decision is allowed to depend, despite being correlated with sensitive variables. We show (among other things) that the problem of deciding fairness as we have defined it is co-NP-complete, but then argue that, despite that, in practice the problem should be manageable.
more »
« less
- Award ID(s):
- 1718108
- PAR ID:
- 10322610
- Date Published:
- Journal Name:
- Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-21)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Fairness in data-driven decision-making studies scenarios where individuals from certain population segments may be unfairly treated when being considered for loan or job applications, access to public resources, or other types of services. In location-based applications, decisions are based on individual whereabouts, which often correlate with sensitive attributes such as race, income, and education. While fairness has received significant attention recently, e.g., in machine learning, there is little focus on achieving fairness when dealing with location data. Due to their characteristics and specific type of processing algorithms, location data pose important fairness challenges. We introduce the concept of spatial data fairness to address the specific challenges of location data and spatial queries. We devise a novel building block to achieve fairness in the form of fair polynomials. Next, we propose two mechanisms based on fair polynomials that achieve individual spatial fairness, corresponding to two common location-based decision-making types: distance-based and zone-based. Extensive experimental results on real data show that the proposed mechanisms achieve spatial fairness without sacrificing utility.more » « less
-
Algorithmic fairness is becoming increasingly important in data mining and machine learning. Among others, a foundational notation is group fairness. The vast majority of the existing works on group fairness, with a few exceptions, primarily focus on debiasing with respect to a single sensitive attribute, despite the fact that the co-existence of multiple sensitive attributes (e.g., gender, race, marital status, etc.) in the real-world is commonplace. As such, methods that can ensure a fair learning outcome with respect to all sensitive attributes of concern simultaneously need to be developed. In this paper, we study the problem of information-theoretic intersectional fairness (InfoFair), where statistical parity, a representative group fairness measure, is guaranteed among demographic groups formed by multiple sensitive attributes of interest. We formulate it as a mutual information minimization problem and propose a generic end-to-end algorithmic framework to solve it. The key idea is to leverage a variational representation of mutual information, which considers the variational distribution between learning outcomes and sensitive attributes, as well as the density ratio between the variational and the original distributions. Our proposed framework is generalizable to many different settings, including other statistical notions of fairness, and could handle any type of learning task equipped with a gradientbased optimizer. Empirical evaluations in the fair classification task on three real-world datasets demonstrate that our proposed framework can effectively debias the classification results with minimal impact to the classification accuracy.more » « less
-
As learning-to-rank models are increasingly deployed for decision-making in areas with profound life implications, the FairML community has been developing fair learning-to-rank (LTR) models. These models rely on the availability of sensitive demographic features such as race or sex. However, in practice, regulatory obstacles and privacy concerns protect this data from collection and use. As a result, practitioners may either need to promote fairness despite the absence of these features or turn to demographic inference tools to attempt to infer them. Given that these tools are fallible, this paper aims to further understand how errors in demographic inference impact the fairness performance of popular fair LTR strategies. In which cases would it be better to keep such demographic attributes hidden from models versus infer them? We examine a spectrum of fair LTR strategies ranging from fair LTR with and without demographic features hidden versus inferred to fairness-unaware LTR followed by fair re-ranking. We conduct a controlled empirical investigation modeling different levels of inference errors by systematically perturbing the inferred sensitive attribute. We also perform three case studies with real-world datasets and popular open-source inference methods. Our findings reveal that as inference noise grows, LTR-based methods that incorporate fairness considerations into the learning process may increase bias. In contrast, fair re-ranking strategies are more robust to inference errors. All source code, data, and experimental artifacts of our experimental study are available here: https://github.com/sewen007/hoiltr.gitmore » « less
-
We consider the problem of whether a Neural Network (NN) model satisfies global individual fairness. Individual Fairness (defined in (Dwork et al. 2012)) suggests that similar individuals with respect to a certain task are to be treated similarly by the decision model. In this work, we have two main objectives. The first is to construct a verifier which checks whether the fairness property holds for a given NN in a classification task or provides a counterexample if it is violated, i.e., the model is fair if all similar individuals are classified the same, and unfair if a pair of similar individuals are classified differently. To that end, we construct a sound and complete verifier that verifies global individual fairness properties of ReLU NN classifiers using distance-based similarity metrics. The second objective of this paper is to provide a method for training provably fair NN classifiers from unfair (biased) data. We propose a fairness loss that can be used during training to enforce fair outcomes for similar individuals. We then provide provable bounds on the fairness of the resulting NN. We run experiments on commonly used fairness datasets that are publicly available and we show that global individual fairness can be improved by 96 % without a significant drop in test accuracy.more » « less
An official website of the United States government

